
cm

00

.~APR11990D

D _ _ _ _ _ _ _ _ _ _

,xarnination of Hypercube Implementations of Genetic Algorithms

THESIS

Andrew Dynelk

Catain. USAT

AFIT/GCS/ENG/92NM-02

Th~dcurnnhab~nJ7~ 92-0813"'
tot public lihias andI allIII IW 111 dtlth
di~txitof is uninitcL~

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

~ 3 1 078

AFIT/GGS/ENG/92M-02

DTICSAPR 0 11992D

An Examination of Hypercube Implementations of Genetic Algorithms

THESIS

Accesiorn For
Andrew DymekNTS -- --

Captain, USAF DTV' TAP,

AFIT/GCS/ENG/92M-02 J U

Dizt 'baicg-0

/ DitJ 1P2~ U

Approved for public release; distribution unlimited

RO Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pi C rponr! - ; Lurcen " r :T"s :.!!e!Ion ':f ,Tormation *s est a ao.0! .eriqe ! our oer resoorse. including the time for reviewing instructions. searrn,ng eisting data sourc
e
s

oather1'g ,r'o '.rlt3 hp data 8 eoe . ra' ccr-pietnq .l re we-r,- r m KOieCOCn or information Send comments r- aring this burden estimate or ani ,thier asoe-t of th s
C!ie(tol.3)i .,r.' Itor l'C ". Ing sUq , -Cs iS or reducing ,is ourlen : .V,isr,qon Heac uar'ers Ser .ces. Directorate for -nformation Operations ui. 2eo r rs. 1215 Jefferson
a -s 1a 2 S Cte 2:4 ,r gtcin. JA1 22212-4302. and to ti- Jtffe 'f .Ma'agement and udget . P~oervork Reducton Project (0704-0188). Washington., C 20S03

1. AGENCY USE ONLY (Leave Miark) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992I Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Examination of Hypercube Implementations of Genetic Algorithms

6. AUTHOR(S)

Andrew Dymek, Capt, USAF

7. PERFCRMING CRGANIZATION AJAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/92M-02

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Genetic algorithms are stochastic search algorithms which model natural adaptive systems. In support of the
development of a genetic search package for AFI7 s iPSC/2 Hypercube, this study focused on two problem areas
associated with hypercube implementations.
Premature convergence occurs when the "population" becomes dominated by locally optimal, but globally infe-
rior, solutions. Based on an examination of past hypercube implementations, the selection and communication
strategies were hypothesized as causes of prem,'ture convergence. Experiments to test these hypotheses were
conducted on Rosenbrock's saddle, a function often associated with premature convergence. Communication of
best solutions led to premature convergence in small population sizes, but increased the likelihood of finding the
global optimal in largo population sizes. Genetic algorithms using global selection were more robust than those
using local selection.
GA-hard problems are intrinsically difficult for standard genetic algorithms. Messy genetic algorithms are ef-
fective against GA-hard problems. The second part of this study added a parallel version of a messy genetic
algorithm to the genetic algorithm package. Against a sample GA-hard problem, the parallel implementation
achieved a linear speedup of the sequential bottleneck while still finding the global optimal. The messy genetic
algorithm should be applied to problems of practical importance.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Genetic Algorithms, Hypercube 1IO
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540.01-280-5500 Standard Form 298 (Rev 2-89)
Presribed by ANSI, Sid 1 9-'S
29,8102

L

AFIT/GCS/ENG/92M-02

An Examination of Hypercube Implementations of Genetic Algorithms

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Andrew Dymek, B.S.

Captain, USAF

March, 1992

Approved for pubic release; distribution unlimited

Preface

Genetic algorithms are stochastic search algorithms which model the natural selection process.

The purpose of this study was to continue development of a genetic algorithm package for use on

AFIT's iPSC/2 Hypercube computer. As the goal of the package is to provide a robust search

package, the research focused on two problems areas not adequately addressed by the current

package.

The first problem area examined is known as premature convergence, the tendency of a genetic

algorithm to return locally optimal solutions. A goal of this study was to provide guidelines on how

to reduce premature convergence. Rosenbrock's saddle, a function against which sequential and

parallel genetic algorithms often prematurely converge, was selected as the target problem. The

parallel decomposition used in past implementations was examined in detail. The communication

of solutions, use of local selection, and small population sizes were thought to be likely causes of

premature convergence. Experiments were conducted which included the past implementation as

well as implementations using global selection and no communication of solutions. The population

size was varied over a wide range. The genetic algorithms which communicated the best solution

had a greater likelihood of finding the global optimal at the upper ranges of the populations sizes.

However, at smaller population sizes, sharing of the best solutions seemed to increase premature

convergence. The strategies using global selection seemed more robust than the strategies i' ing

local selection over the range of population sizes used in this study. While it is imp ,ssible to

guarantee the strategies found to reduce premature convergence against Rosenbrock's saddle would

reduce premature convergence in any problem, there is some hope in their v neral applicability

given that Rosenbrock's saddle is a very difficult problem for a genetic algorithm.

However, the strategies would not likely work against GA-hard kgenetic algorithm-hard) prob-

lems. GA-hard problems are intrinsically difficult for standard genetic algorithms. To deal effec-

tively with GA hard problems, a new genetic algorithm, called a messy genetic algorithm, has

i

been developed by Goldberg, Korb, and Deb. The second part of the study focused on adding a

parallel version of a messy genetic algorithm to the genetic algorithm package. A parallel version

is attractive given the large memory resources and sequential bottleneck associated with a messy

genetic algorithm. Against a sample GA-hard problem, the parallel implementation achieved a lin-

ear speedup of the sequential bottleneck while still finding the global optimal. This work should be

continued against problems of practical importance, especially given the bold conjectures by Gold-

berg, Korb, and Deb regarding the effectiveness of messy genetic algorithms against combinatoric

optimization problems.

In the course of this study, I have received a good deal of help and guidance. My thesis

advisor, Dr. Gary Lamont, suggested the topic and offered support throughout. Maj William

Hobart and Maj Paul Bailor provided valuable comments as readers. Mr. Richard Norris, the

iPSC/2 system manager, was always willing to answer questions on the C programming language.

Capt Paul Hardy and Capt Joann Sartor taught me much of what I know of IATEX and its related

facilities. To all these people I give my sincere thanks.

Andrew Dymek

iii

Table of Contents

Page

Preface

Table of Contents v

List of Figures. V

Abstract Vi

1. Introduction. 1

1.1 General Issue 1

1.2 Background. 3

1.3 Problem Statement. 6

1.4 Research Objectives. 6

1.5 Research Questions. 7

1.6 Assumptions 7

1.7 Scope 8

1.8 Limitations. 8

1.9 Expected Benefits of This Research 10

1.10 Summary 11

1.11 Layout of Thesis. 11

1I. Literature Review 12

2.1 An Abstract Model of Adaptation. 12

2.2 Genetic Algorithm Development. 13

2.2.1 Data Structures. 14

2.2.2 The Population. 15

2.2.3 Genetic Operators. 16

iv

Page

2.2.4 The Adaptive Plan and Algorithms 20

2.3 Behavior of Genetic Algorithms 22

2.3.1 Holland's Theoretical Results 22

2.3.2 Empirical Results 22

2.4 GA-hard (Deceptive) Problems 23

2.5 Parallel Genetic Algorithms 25

2.5.1 Past Research in Parallel Genetic Algorithms 25

2.5.2 Hypercube Implementation Details 27

2.5.3 Analysis of the Hypercube Implementation 27

2.6 Directions Taken Based on Literature Review 30

III. Methodology - Examination and Reduction of Premature Convergence 31

3.1 Introduction 31

3.2 Target Problem - Rosenbrock's Saddle 31

3.2.1 Justification of Choice 31

3.2.2 Description of Rosenbrock's Saddle 32

3.2.3 Why is Rosenbrock's Saddle Difficult for a Genetic Algorithm? . 33

3.3 Preliminary Experimentation and Analysis 39

3.3.1 Justification 39

3.3.2 Binary Encoding/Decoding is an Expensive Operation 40

3.3.3 Enumerative Search has no Redundancy 40

3.3.4 Existence of Local Minima 41

3.4 Justification of Global Selection on Hypercube 41

3.4.1 Theoretical Basis 41

3.4.2 Example 42

3.4.3 Answering Objections to Implementing Global Selection..... .. 43

3.5 Experimental Design 46

3.5.1 Code Reuse 46

v

Page

3.5.2 Code Evaluation 48

3.5.3 Implementation of Global Selection 48

3.5.4 Parameter Settings/Selection Strategies 52

3.5.5 Data Gathering 54

IV. Results of Premature Convergence Reduction Strategies 55

4.1 Introduction ... 55

4.2 Data Compression and Interpretation 55

4.3 Why the Results were not Generalized 61

4.4 Summary ... 61

V. Methodology & Design - Messy Genetic Algorithm 63

5.1 Introduction ... 63

5.2 Problem Discussion 63

5.3 High Level Design 64

5.3.1 Required Objects 64

5.3.2 Required Operations 65

5.4 Low-Level Design 72

5.4.1 Programming Language 72

5.4.2 Data Structures 72

5.4.3 Population Member 73

5.4.4 The Population Data Structure 77

5.4.5 Minimizing Memory Use During Primordial Reproduction. . .. 80

5.4.6 Resolving a Possible Anomaly. 84

5.4.7 Data Structure Feasibility 84

5.5 Algorithm Development 85

5.5.1 Messy Genetic Algorithm Executive 88

5.5.2 Input Algorithm 88

vi

Page

5.5.3 Initialization Algorithm 88

5.5.4 Primordial Phase Algorithm 98

5.5.5 Juxtapositional Phase Algorithm 1,'1

5.6 Coding the Messy Genetic Algorithm 105

5.7 Test Strategy .. 105

5.8 Choice of Problem 108

5.9 Summary .. 111

VI. Parallelization of the Messy Genetic Algorithm 113

6.1 Introduction 113

6.2 Sequential Bottleneck 113

6.3 Determining Effective Parallel Decompositions 114

6.3.1 Generation of the Competitive Template 114

6.3.2 Enumerative Initialization and Evaluation 115

6.3.3 Primordial Phase 120

6.3.4 Juxtapositional Phase. 120

6.4 Mapping to the Hypercube 121

6.5 Summary ... 122

VII. Messy Genetic Algorithm - Implementation Results 124

7.1 Introduction 124

7.2 Parameter Settings 124

7.3 Sequential Implementation 124

7.4 Parallel Implementation 125

7.4.1 Execution Times and Speedup 125

7.4.2 Solution Quality 125

7.4.3 Comparison with Literature Results 126

vii

Page

VIII. Conclusions 132

8.1 Research Questions Conclusions 132

8.2 Summary ... 134

IX. Recommendations 135

9.1 Introduction 135

9.2 Problem Recommendations 135

9.2.1 Collaboration with Domain Experts 135

9.2.2 Application of Simple Genetic Algorithms to Non-Differentiable

Functions 135

9.2.3 Application of Messy Genetic Algorithms to Real-Word Problems. 136

9.3 Recommendations for Future Research 137

9.3.1 Termination Criteria/Solution Quality Indicator 137

9.3.2 Meta-Level Hypercube Implementation 140

9.4 Summary ... 142

Appendix A. Parallel Random Number Generation 143

A.1 Requirements 143

A.2 Examination of the Parallel Random Number Generator 145

A.3 Does the Sequence Appear to be Random? 148

A.4 Prevention of Perfect "Correlation." 151

A.5 Ramifications of Overlap 151

A.6 A Final Misgiving with the Random Number Generator 154

Appendix B. Experimental Data-Examination of Premature Convergence using Rosen-

brock's Saddle 155

Bibliography 171

viii

List of Figures

Figure Page

1. Solution times for exponential time complexity algorithms on a TeraFLOP computer.

Adapted from (28:11) 2

2. A Few Genetic Algorithm Applications 4

3. AFIT's Genetic Algorithm Toolkit (Current Status) 10

4. Holland's Symbology (47:28-29,171) 13

5. Concept Map of an Adaptive System 14

6. Correspondence Between a Chromosome and a String 14

7. Crossover Creates New Solutions 18

8. Some Differences between Simple and Messy GAs 24

9. Applications and Implementations of Genetic Algorithms 26

10. Typical Hypercube "Decon position" of Genetic Algorithm 28

11. Details of Coarse-Grain Implementations 29

12. Linear Linear Plot of Rosenbrock's Saddle 34

13. Log Plot of Rosenbrock's Saddle - Front View 35

14. Log Plot of Rosenbrock's Saddle - Rear View 36

15. Contour Plot of Rosenb:ock's Saddle 37

16. Second Order Term 38

17. Enumerative Search Run Times 40

18. Deviations from Expected Population Sizes Using Local Selection 42

19. Population Sizes not Constant 44

20. Population Changes are not Monotonic 45

21. Structure chart of the Parallelized Genesis Genetic Algorithm 46

22. Top-Level Unity Design of a Genetic Algorithm 47

23. Parallelizing Baker's Algorithm 51

24. Optimal Population Sizes in Terms of Solution Average 56

ix

Figure Page

25. Optimal Population Sizes in Terms of Finding Global Best 56

26. Best Solutions versus Run Time 58

27. Solution Quality is Dependent on Random Number Seed 59

28. Execution Time Varies Linearly with Population Size 60

29. Least Squares Regression Equations 60

30. Genetic Program Universe 62

31. Context Diagram for a Messy Genetic Algorithm 67

32. Level 1 Data Flow Diagram for a Messy Genetic Algorithm 67

33. Data Flow Diagram for Primordial Phase 68

34. Data Flow Diagram for Juxtapositional Phase 69

35. Data Dictionary for Messy Genetic Algorithm 70

35. Data Dictionary for Messy Genetic Algorithm (cont'd) 71

36. Data Structure Requirements of the Different Phases of a mGA 72

37. Alternate Loci Data Structures 75

38. Population Array Reproduction Strategy - "Highwater Mark".... 81

39. Indexed Reproduction Strategy - "Highwater Mark"..... 83

40. Memory Requirements - Building Block Size 2 85

41. Memory Requirements - Building Block Size 3 86

42. Memory Requirements - Building Block Size 4 87

43. Recursive Tree Showing Redundant Effort 94

44. Generation of Combinations 96

45. Cut and Splice Operations 103

46. Structure Chart for Messy Genetic Algorithm 106

47. Fitness Value for the 3-bit Subfunctions 108

48. Hamming Graph of Deceptive Subfunction 109

49. Fitness Gradient Leads Away from Optimal 110

50. Time Data for Various Parts of the mGA - 1 Node 113

x

Figure Page

51. A Considered Parallel Decomposition 116

52. Load-Balanced Parallel Decomposition 119

53. Messy Genetic Algorithm Parameter Settings 124

54. Time Data for Various Parts of the mGA - 2 Nodes 126

55. Time Data for Various Parts of the mGA - 4 Nodes 126

56. Time Data for Various Parts of the mGA - 8 Nodes 127

57. Overall Run Time versus Inverted Number of Nodes 127

58. Speedup versus Number of Nodes 128

59. Primordial Phase Run Time versus Inverted Number of Nodes 128

60. Primordial Phase Speedup versus Number of Nodes 129

61. Grefenstette's Meta-Level Genetic Algorithm 140

62. Random Numbers are an Integral Part of a Stochastic Algorithm 144

63. Possible Stochastic Algorithm Relationships on the Processors of a Parallel Computer 146

64. Parameters in Random Number Generator in Genesis 147

65. Pseudo-Random Number Generator Test Data 148

66. Distribution of Zeros 149

67. Data Bins for the Chi-Square Test 149

68. Program to Generate Data for Chi-Square Test for Randomness 150

69. Nodal Seeds versus User Input Seeds for Nodes 6 and 7 152

70. Minimum User Input Seeds for Random Number Generator 152

71. Correlation Between Nodal Random Number Sequences 153

72. Best Solution Evolution - Population Size 80 155

73. Best Solution Evolution - Population Size 120 155

74. Best Solution Evolution - Population Size 160 156

75. Best Solution Evolution - Population Size 200 156

76. Best Solution Evolution - Population Size 240 157

77. Best Solution Evolution - Population Size 280 157

xi

Figure Page

78. Best Solution Evolution - Population Size 32U 158

79. Best Solution Evolution - Population Size 640 158

80. Best Solution Evolution - Population Size 960 159

81. Best Solution Evolution - Population Size 1280 159

82. Best Solution Evolution - Population Size 1600 160

83. Best Solution Evolution - Population Size 1920 160

84. Best Solution Evolution - Population Size 2240 161

85. Best Solution Evolution - Population Size 2560 161

86. Best Solution Evolution - Population Size 2880 162

87. Best Solution Evolution - Population Size 3200 162

88. Performance Statistics - Population Size 80 163

89. Performance Statistics - Population Size 120 163

90. Performance Statistics - Population Size 160 164

91. Performance Statistics - Population Size 200 164

92. Performance Statistics - Population Size 240 165

93. Performance Statistics - Population Size 280 165

94. Performance Statistics - Population Size 320 166

95. Performance Statistics - Population Size 640 166

96. Performance Statistics - Population Size 960 167

97. Performance Statistics - Population Size 1280 167

98. Performance Statistics - Population Size 1600 168

99. Performance Statistics - Population Size 1920 168

100. Performance Statistics - Population Size 2240 169

101. Performance Statistics - Population Size 2560 169

102. Performance Statistics - Population Size 2880 170

103. Performance Statistics - Population Size 3200 170

xii

AFIT/GCS/ENG/92M-02

Abstract

Genetic algorithms are stochastic search algorithms which model natural adaptive systems.

In support of the development of a genetic search package for AFIT's iPSC/2 Hypercube, this

study focused on two problem areas associated with hypercube implementations.

Premature convergence occurs when the "population" becomes dominated by locally opti-

mal, but globally inferior, solutions. Based on an examination of past hypercube implementations,

the selection and communication strategies were hypothesized as causes of premature convergence.

Experiments to test these hypotheses were conducted on Rosenbrock's saddle, a function often

associated with premature convergence. Communication of best solutions led to premature conver-

gence in small population sizes, but increased the likelihood of finding the global optimal in large

population sizes. Genetic algorithms using global selection were more robust than those using local

selection.

GA-hard problems are intrinsically difficult for standard genetic algorithms. Messy genetic

algorithms are effective against GA-hard problems. The second part of this study added a parallel

version of a messy genetic algorithm to the genetic algorithm package. Against a sample GA-hard

problem, the parallel implementation achieved a linear speedup of the sequential bottleneck while

still finding the global optimal. The messy genetic algorithm should be applied to problems of

practical importance.

xiii

An Examination of Hypercube Implementations of Genetic Algorithms

I. Introduction

1.1 General Issue.

Computer solutions to many problems cannot be obtained in acceptable amounts of time.

Even the most powerful current computer, if given a problem sufficiently complex, would take

centuries to return a solution. One might think a TeraFLOP computer1 , the ultimate goal of

DARPA's 2 Touchstone Program, would provide the final answer to this computational problem.

Yet if the truly complex problems-the "Grand Challenges" (62)-are ever to be solved, improved

algorithmic methods must accompany improvements in computer technology (75:179).

Even with a process as seemingly mundane as a search, the state of the art in algorithms

cannot be said to be acceptable in many cases. For example, a typical solution method (algorithm)

for combinatorial optimization problems can involve an exhaustive search of all possible solutions.

While this guarantees an optimal solution, search times grow exponentially with the size of the

problem. Even a TeraFLOP computer would quickly succumb to moderately-sized problems having

an exponential time complexity. The execution times shown in Figure 1 are especially disconcerting

in light of the fact that a search is often involved in the solution of many critical problems.

To allow a search to complete in a reasonable amount of time, often the requirement to find

the optimal solution is relaxed. Search algorithms that sacrifice solution quality for efficiency are

often called semi-optimal search algorithms. Semi-optimal search methods achieve greater efficiency

(generally polynomial-time solutions) by searching only a subset of the possible solutions. The risk

'A computer capable of one trillion floating point operations per second
2Defense Advanced Research Projects Agency

Time Problem Size (n)
Complexity 30 40 50 60 70
Puncetion

2n 1.07 * 10 - 3 sec 1.09 sec 18.7 min 13.35 hrs 36.35 yrs
3n 3.41 min 140.8 days 200 centuries 1.3*10' centuries 1.34 * 1011 centuries

Figure 1. Solution times for exponential time complexity algorithms on a TeraFLOP computer.
Adapted from (28:11).

is that the solution returned by a semi-optimal search method may be quite inferior to the global

optimal solution.

An additional limitation of most semi-optimal search methods is lack of robustness (34:2-

7). One common semi-optimal method known as a greedy algorithm may return an outstanding

solution or a miserable solution depending on the distribution of solutions in the search space.

Gradient-based search techniques perform well against differentiable functions, but have difficulties

with functions having no analytical derivative. A search algorithm that performs efficiently over all

problem domains has yet to be found. However, one fairly new class of algorithms called genetic

algorithms seems to come close.

Genetic algorithms, adaptive search algorithms which model the natural selection process,

have shown much promise in terms of efficiency, effectiveness, and robustness. These algorithms

have returned excellent solutions to problems in such diverse fields as combinatoric and functional

optimization, aircraft design, and conformational analysis, just to name a few. In addition to

empirical evidence demonstrating robustness, there is a theoretical foundation as well (47) (34:2).

Also, the polynomial time complexity of genetic algorithms makes them less sensitive to increases

in problem dimensionality than a search algorithm having exponential time complexity.

Despite the generally outstanding performance of genetic algorithms, problems and limi-

tations remain. For instance, while genetic algorithms have been quite successful at returning

near-optimal solutions in diverse applications, an occasional tendency to return inferior solutions

has been observed. A common reason cited for such problems is premature convergence, defined as

2

dominance of the solution "population" by local optima. Premature convergence has been observed

in both sequential and parallel implementations. Certain problems, known as GA-hard (Genetic

Algorithm-hard) problems are inherently difficult for the standard genetic algorithm.

To explore the capabilities of genetic algorithms, a Genetic Algorithm Toolbox is being de-

veloped here at AFIT for use on the iPSC/2 and iPSC/860 Hypercubes. To date, the standard

genetic algorithm has been parallelized (71). The goal is a robust search package. This thesis

research explores means of attacking premature convergence and GA-hard problems.

1.2 Background

There is a vast array of search methods (algorithms). Despite the apparent diversity in their

operation, many search methods can be described in terms of of the following components (7:79-80):

" A set of candidates from which to construct a solution.

" A set of candidates that have already been used or considered.

* A test for feasibility.

" A selection function used to choose a the next candidate in the composition of the solution.

* An objective function which assigns a value to a solution.

Search algorithms based on such components tend to proceed in an orderly, deterministic manner.

Bearing witness to the orderliness of the search process is the fact that it is often described with a

tree or a graph. Such popular search algorithms as the A*, AO, best-first, and branch-and-bound,

are included in this class of orderly, deterministic algorithms.

A genetic algorithm differs quite significantly from the search process described above. Only

the set of candidates and a objective function can be found in a genetic algorithm. These com-

ponents take on the syntax and some of the semantics of analogous components in the natural

selection process. The set of candidates are encoded into a string of genes amenable to genetic

3

operations. The objective (fitness) function provides a measure of the fitness of a solution. Here

the similarities end. A main contributor to the differences are the genetic operators. The stochas-

tic and disruptive nature of genetic operators leads to a much less structured search than, say, a

greedy or best-first search. As a consequence, a genetic algorithm has neither a test for feasibility,

a selection function, or a set of used candidates, nor can the course of the search be described as

a tree or a graph. Additionally, a genetic search considers multiple solutions (the population) at

the same time, another key difference from most search algorithms. Yet while a genetic algorithm

might seem a radical departure from traditional methods, the differences apparently do not prevent

genetic algorithms from being an effective search technique.

Genetic algorithms have been used as a search strategy in diverse problem domains (Fig-

ure 2) since their introduction in 1970's. John Grefenstette of the Navy Labs developed a C

implementation of a genetic algorithm in the mid 1980's (41). Designed to facilitate experimen-

tation, Grefenstette's program has been widely used throughout the research community. Parallel

implementations on both coarse and fine grain machines were reported after 1987. A parallel decom-

position introduced by Tanese has been used with little variation in all Hypercube implementations

reported in the literature (73:179). In Tanese's decomposition, solutions are shared among genetic

algorithms assigned to each node of the Hypercube.

Facial Recognition (10:416-421)
Classifier Systems (68:324-333)
Robot Trajectories (17:144-165)
Resource Scheduling (72:502-508)
NP-Complete Problems (46:231-236)
DNA Conformational Analysis (56:251-281)
Database Query Optimization (3:400-407)
Parametric Design of Aircraft (6:213-218)
Neural Net Architecture Synthesis (45:202-222)

Figure 2. A Few Genetic Algorithm Applications

4

While sequential and parallel genetic algorithms generally are quite successful at return-

ing "good" solutions', difficulties sometimes arise. A problem sometimes associated with both

sequential and parallel genetic algorithms is known as "premature convergence." In premature

convergence, the search stalls at a locally optimal solution. While in some cases difficulties like

premature convergence can be corrected by a change in parameter settings, Bethke and Goldberg

have shown that certain classes of problems are intrinsically difficult for genetic algorithms (GA)

(4) (32) (33). These difficult problems are known as GA-hard problems. In response to the diffi-

culties standard genetic algorithms have with GA-hard problems, Goldberg, Deb, and Korb have

developed a new type of genetic algorithm known as a messy genetic algorithm. Empirical results

have shown messy genetic algorithms to consistently outperform standard genetic algorithms when

applied to GA-hard problems (36) (37) (38).

A limited amount of research into genetic algorithms has been conducted at the Air Force

Institute of Technology (AFIT). In their doctoral research, Lt Col Bruce Conway and Capt Ronald

Jackson used Grefenstette's Genesis genetic algorithm code to obtain "very good solutions" to a

noisy Kohonen net problem and a eigenvalue problem having no closed-form solutions, respectively 4 .

Capt George Sawyer parallelized Grefenstette's genetic algorithm using the typical coarse-grained

decomposition (71). Additionally, the permutation version of Grefenstette's code was similarly

decomposed as part of a special study related to this thesis effort. These parallelized genetic

algorithms form the foundation of a planned Genetic Algorithm Toolkit for hypercube computers.

3 There seem to be several criteria of "goodness" in the literature. The nearness of the solution to the known
optimal or relative to the results of other search techniques (especially simulated annealing) seem to be the most
common criteria used by researchers, while those using genetic algorithms to solve practical problems base their
assessment on how well their solution requirements are met.

4 Personal interview with Lt Col Jackson

5

1.3 Problem Statement.

In support of the development of the Genetic Algorithm Toolkit, this thesis effort attempts to

address the limitations in the available genetic algorithms, specifically the problems of premature

convergence and GA-hard problems.

1.4 Research Objectives.

The research objectives resulted from a decomposition of the broad problem statement men-

tioned in the previous section into smaller, more tangible goals. The objectives of this thesis effort

are

" To gain insight as to why premature convergence occurs.

" To provide guidance and techniques on how to impr,-ve solution quality if premature conver-

gence is suspected.

* To extend current capability by designing and implementing sequential and parallel versions

of a messy genetic algorithm.

" To compare results for the messy genetic algorithm with the early results of Deb, Goldberg,

and Korb.

* To analyze the sequential and parallel versions of the messy genetic algorithm in term of

efficiency and effectiveness.

" To provide a foundation for further development of the Genetic Algorithm Toolkit by ade-

quately documenting, analyzing, and validating the design and code developed in the course

of this thesis effort.

6

1.5 Research Questions.

In support of the accomplishment of the research objectives, this research effort addresses the

following questions:

1. Is the parallel implementation of the standard genetic algorithm theoretically sound?

2. If the parallel implementation diverges from GA theory, do modifications to improve the

theoretical correspondence of the algorithm alleviate the premature convergence problem?

3. What, if any, benefit is obtained by sharing the solutions among genetic algorithms executing

on the Hypercube?

4. Do the test results of the sequential messy genetic algorithm developed in this research effort

correspond to the published results of Deb, Goldberg, and Korb?

5. Is the messy genetic algorithm amenable to parallelization? (The messy genetic algorithm

has yet to be parallelized). Specifically, does the parallel implementation result in a speedup

without a loss of solution quality?

These research questions are addressed in the conclusions to this thesis.

1.6 Assumptions.

" Genesis Code. Grefenstette's Genesis code is assumed to be validated since it has been used

successfully for several years. No independent validation of Genesis is performed. However,

Sawyer's parallel implementation is tested for logical errors (Chapter 3).

" Assumptions on Readership. This research is primarily concerned with parallel genetic algo-

rithms. While a cursory review of sequential genetic algorithms is provided, many details are

not included. For a more detailed explanation, Goldberg's book is an excellent source (34).

Data flow diagrams, data dictionary, and pseudocode are used to document the design of the

7

messy genetic algorithm. No tutorial on the associated terminology is provided. Yourdon's

book is highly recommended (76).

1.7 Scope.

One problem that has a history of exhibiting premature convergence on a hypercube genetic

algorithm is analyzed. The problem is the minimization of the function known as Rosenbrock's

Saddle. Methods to alleviate the premature convergence associated with this problem are explored.

As is shown in Chapter 2, a genetic algorithm is defined or "instantiated" with numerous parameters

that are believed to have a non-linear relationship (40:122-123). Finding optimal settings is a

combinatoric search problem in itself. So the parameters and strategies examined in the attempt

to reduce premature convergence are limited to the ones judged most likely to offer improvement-

population size and selection strategy. Chapter 3 provides further discussion and justification for

these choices.

The messy genetic algorithm analysis, design, implementation, parallelization, and validation

is an extensive and detailed process. So this initial research into this search process focuses on

i~arallelizing the algorithm, something that has not been done before. To validate the parallel

mGA, it is first applied to a classical problem (36:510-511). Ideally, the mGA should be applied to

a problem of practical importance (see Chapter IX).

1.8 Limitalions.

A problem with a semi-optimal search method such as a genetic algorithm is that it gives

no indication of the quality of the solution it returns. In the current state of the art of genetic

algorithms, the user of the program is not even guaranteed a "good" solution has been found, only

that the solution being returned is the best in the subset of the search space explored.

8

Consequently, the user must decide whether premature convergence has occurred. To make

an immediate decision requires knowledge of the problem domain. Lacking such knowledge makes it

necessary for the user to perform some sort of relative evaluation- comparing results with different

paramenter settings, use of different search techniques, or comparison with literature results. The

ultimate test is whether the solution found adequately meets the user's requirements. Such a

decision can only be made by the user.

Another limitation is that the selection of the type genetic algorithm to use-standard or

messy-also lies with the user. Again, knowledge of the form of the function governing the problem

is important in making this decision. Neither genetic algorithm "flags" the user that th, problem

the user wants optimized is difficult for it to solve, and that perhaps an alternate strategy should be

used. An expert system front end may one day help in choosing the appropriate genetic algorithm,

but such a capability is not currently provided.

In using the messy genetic algorithm, the building block size (non-linearity of the problem)

must be input by the user. Generally, the non-linearity of the problem is not known. In tests

conducted with the messy genetic algorithm developed in this research, if the "wrong" non-linearity

is input, solution quality is negatively affected.

Finally, the Genetic Algorithm Toolkit is not yet integrated. Currently, each genetic algorithm

has its own user interface and resides in different directories. Non-uniform interfaces and the need

to manually change directories detract form user friendliness. Ideally, the Toolkit should have a

single interface allowing the user to choose the desired genetic algorithm.

It should be pointed out that the limitations mentioned here (except the user interface) reflect

the state-of-the-art in genetic algorithms. Hopefully, the limitations will not daunt anyone from

using genetic algorithms. A review of the literature reveals numerous success stories in diverse

applications.

9

1.9 Expected Benefits of This Research.

A goal of the Genetic Algorithm Toolkit is to provide users with a robust search package.

Addressing the problem of premature convergence and adding a messy genetic algorithm for GA-

hard problems are steps towards meeting this goal (Figure 3). With the addition of a better user

interface, AFIT will have an excellent genetic search package which could benefit all disciplines

within the school.

Genetic
I Algorithm -

(Sawyer) : M essy
L- -. - - Genetic

iAlgorithm ,Function Optimization Lg orim j

Boolean Satisfiability GA-hard Problems

Combinatoric
Optimization?

* Permutation
Genetic

Algorithm

Traveling Salesman

Job-Shop Scheduling

- - -- This Research

Figure 3. AFIT's Genetic Algorithm Toolkit (Current Status)

10

1.10 Summary.

This chapter began with a general introduction of search, emphasizing the problems of ineffi-

ciency and lack of robustness in many search techniques. It was indicated that genetic algorithms,

a class of stochastic search techniques, have shown great potential to efficiently search broad do-

mains, motivating the development of a Genetic Algorithm Toolkit in this research. A background

discussion summarized several milestones in the development of genetic algorithms, including past

uses and current capability at AFIT. Since the current capability was found to be lacking in provid-

ing strategies for dealing with premature convergence and GA-hard problems, research objectives

and questions were formulated to address these deficiencies. The assumptions, scope, limitations,

and expected benefits of this thesis effort were also provided.

1.11 Layout of Thesis.

The remainder of this thesis is organized as follows. Chapter II contains the literature review,

which focuses on parallel implementations of genetic algorithms and GA-hard problems. Chapter III

discusses and justifies the methods used to examine and reduce premature convergence in a target

problem. Chapter IV contains the experimental results. Chapter V discusses the methodology and

design of a sequential messy genetic algorithm. Chapter VI details the steps taken to parallelize the

messy genetic algorithm. Chapter VII contains the results obtained from parallelizing the messy

genetic algorithm. Chapter VIII discusses the conclusions derived from this research. Chapter IX

offers recommendations for the project and for future research.

11

II. Literature Review.

This chapter contains the literature review conducted in support of this thesis effort. Sec-

tion 2.1 summarizes Holland's work in the abstraction of the salient features of natural adaptive

systems. Section 2.2 describes how the abstractions are generally implemented in a genetic algo-

rithm. Section 2.5.1 gives an overview of past research in parallel genetic algorithms, in particular

Hypercube implementations. Section 2.4 introduces problems that are inherently difficult for simple

genetic algorithms, the GA-hard problems.

2.1 An Abstract Model of Adaptation.

In Chapter 1, efficiency, effectiveness, and robustness are cited as desirable characteristics of

an optimizing search algorithm. The correspondence between characteristics of a successful search

strategy and a successful species in nature is intuitively appealing. A species (solution) adapts to

its environm, t (problem), becoming better suited (more optimal) to the environment as time goes

on. A successful species adapts to changes in the environment. That is, a species must be robust to

survive. If the adaptation to a environment occurs too slowly, the species may die out. So a certain

amount of efficiency seems a requirement. Observations such as these motivated the development

of genetic algorithms. Bridging the gap between intuition and algorithm development was not a

trivial step, however.

Much of the early development of genetic algorithms was the work of John Holland of the

University of Michigan. His book, Adaptation in Natural and Artificial Systems (47) describes how

structures and operations similar to those found in natural systems can be used in an optimizing

search. To take advantage of the characteristics of a successful species in a search process, Holland

identified and abstracted the salient features of an adaptive system in nature.

The identification of the key components of a natural system system allowed Holland to

construct an abstract model that could be applied to artificial processes. To allow a formal, un-

12

ambiguous description of an adaptive system, Holland used symbols to represent its components

(47:20-31). Key components and their associated symbols are an adaptive plan r, structures A,

and a set of operators w. The adaptive system evolves in response to signals I that are generated

by the environment E. Figure 4 defines the key components in an adaptive system.

Symbol Definition
E environment to which a system is adapting
I set of inputs to system from environment

A the domain of possible structures
w set of operators for modifying structures
r adaptive plan-specifies how operators

are applied (algorithm)

Figure 4. Holland's Symbology (47:28-29,171)

Holland's next step was to identify the relationships between the adaptive components. His

symbology allowed the relationships to be described formally using equations (47:21-25). The

relationships indicated by his equations were used to construct Figure 5. Notice the adaptive process

involves interaction between the adaptive system and the environment, as well as interactions

between the components of the adaptive system.

2.2 Genetic Algorithm Development.

The abstract model presented in the last section is quite general. Further refinement was

needed before a genetic search program could be developed. However, no specific data structures,

operators, adaptive plan (algorithm) were mandated as being essential by Holland. His initial

description is very general (47:1-19), allowing "considerable latitude" in the choice of structures

(47:159). Evidently, an infinite number of data structures and operators could be used to form a

genetic program. Despite this flexibility, Holland again made the logical choice and let nature be

his guide. His selection of fairly simple structures and operations facilitated a rigorous description

of the behavior of a restricted class genetic algorithms (see Section 2.3.1).

13

determines0

modify Adaptive System..---

Environment

adapts to e

generates

Figure 5. Concept Map of an Adaptive System

2.2.1 Data Structures. The structures Holland developed are quite similar to chromosomes.

While Holland describes some fairly complicated chromosomal structures and operators, the bulk

of his theoretical work focused on a single-stranded, constant-length string (l-tuple) (47:89). As

the terminology associated with the composition of strings and chromosomes is often used inter-

changeably, Figure 6 provides a semantic map.

chromosome string
allele value
locus position
gene (position, value)

Figure 6. Correspondence Between a Chromosome and a String

The string data structures Holland describes in Adaptation in Natural and Artificial Systems

have been widely used in practical applications of genetic algorithms, despite the fact that other,

more complicated structures are not prohibited (47:141-158). The theoretical foundation, simplicity,

14

and generally excellent results in broad problem domains I associated with fixed-length strings are

likely reasons why other structures are seldom used.

In an optimization problem, the string is an encoding of the parameters which specify a

solution to the problem (34:7). The length of the string is dependent on the number of parameters,

the domain of the parameters, and the desired resolution (precision). Characters from an alphabet

are used to encode the string. While any alphabet with a cardinality greater than two could encode

the parameters of a problem, Goldberg recommends the use of "the smallest alphabet that permits

a natural representation of the problem" (34:80). Strings encoded with smaller alphabets allow

a more efficient search than strings encoded with larger alphabets (34:82). So a binary encoding

seems quite desirable.

For some applications, the encoding of the parameter set to binary form is fairly straight-

forward and natural. For example, the x and y values for a function f(x,y) might be encoded as

binary string of length 2n, with the first n bits representing the x parameter and the second n

bits representing the y parameter. A binary encoding such as this is typically used in functional

optimizations problems. A fixed length binary string also is a natural representation of the Boolean

Satisfiability Problem, an important NP-Complete problem (20:173). For ordering problems such

as the Traveling Salesman Problem and job-shop scheduling, a binary representation is less natural

than a decimal encoding (20:171) (43) (11:160-169), but can still be used (61:474-479).

2.2.2 The Population. To broaden the search, genetic algorithms operate on a "population"

consisting of multiple strings (34:9). Goldberg's analytical work on binary coded strings suggests

that the optimal size of a population is a function of the string length (30). In most applications

of genetic algorithms, the size of the population remains fixed (14:148) (41), possibly due to the

resulting simplicity of the data structure (a static array). However, neither Golderg's nor Holland's

theoretical results prohibit the use of variable-size] populations.

As is discussed shortly, GA-hard problems are an exception

15

2.2.3 Genetic Operators. Genetic operators (w) operate change the composition and distri-

bution of the population of solutions. Some of the more common common genetic operators are

described in the following paragraphs.

2.2.3.1 Ivaluation. The evaluation operator assigns a "fitness" to alstring which is

"some measure of the profit, utility, or goodness" of the string in terms of how well it solves the

problem being optimized (34:1). Formally, fitness is a component of the input 1 (47:25). In all

applications reviewed in the literature, the fitness is the only component of I, meaning that tile

genetic algorithm uses only a "black-box" view of the problem. Since genetic algorithms generally

use no internal or heuristic information related to the problem, such as subtour lengths in a Traveling

Salesman Problem, it is often said that they perform a blind search.

For a function maximization problem, the fitness of a string S is often just set equal to f(S*),

where S* is the set of the decoded variable values and f is the function (34:11). However, assignment

of fitness is less straightforward for functional minimization and many NP-complete problems, since

the goal is to find a solution which minimizes the value of the objective function. In such cases,

a mapping must be performed which assigns high fitness values to low objective values. One such

mapping is to simply subtract the functional value from an arbitrary "high" value. For instance, in

Grefenstette's Genesis algorithm, fitness is assigned by subtracting the functional value from the

the highest functional value encountered in the last N generations, N being a user4specified value.

(41).

In other problems, assigning fitness is somewhat contrived. In the Boolean Satisfiability

Problem, for example, either the boolean expression is satisfied or it is not. Having just two fitness

values "would not allow the formation of useful intermediate building blocks" needed to find an

optimal solution. To form a "fitness gradient" in a Boolean Satisfiability Problem, one approach

has been to assign fitness based on how many conjunctive clauses are true (21:127-128). For the

Set Covering Problem, another problem often without a natural fitness gradient due to the cover

16

constraint, an "artificial" fitness gradient can by created using a penalty function for failure to

cover (55:91-92).

2.2.3.2 Selection. The selection operator changes the frequency distribution of a pop-

ulation of strings based on fitnesses of the strings. In doing so, the selection operator implements

the concept of "survival of the fittest." In his theoretical work, Holland used proportional selec-

tion, in which the expected number of populations slots allotted to a string is directly proportional

to the string's relative fitness (42:20-21). An element of non-determinism is typically introduced

into the selection mechanism. To implement non-determinism in proportional selection, Goldberg

uses a roulette wheel in which the number of slots assigned to a string is directly proportional to

fitness (34:11). To reproduce a population of size N, the wheel is spun N times (34:34). Since

poor solutions are given proportionately fewer slots, their numbers will likely be reduced as the

result of selection, while good solutions are likely to receive multiple copies in the next population

(34:10-12).

Several other selection algorithms have been introduced, none of which has been shown to be

consistently better than other selection algorithms in terms of solution quality (42:25). However,

in his survey of selection algorithms, Baker found differences in terms of the time efficiency. For

example, roulette wheel sampling is typically implemented in O(N 2) time2 , while some of the

newer selection algorithms have O(N) time complexity (1:15,19). One of these O(N) selection

algorithms, known as "Stochastic Universal Sampling" (SUS) algorithm, is used in the Geneszs

genetic algorithm employed in this research (41). While SUS is classified as a "strictly sequential"

algorithm by Baker (1:16), a modification allows it be be effectively parallelized (see Chapter 3).

Unlike selection, which simply redistributes population slots among existing strings, the re-

maining genetic algorithms presented here produce new strings. Since a new string represents a new

2O(NlogN) using a B-tree

17

solution, these "recombination" operators offer the potential for improvement in solution quality

(47:13).

2.2.3.3 Crossover. In crossover, strings are paired up as mates, and at a random

location their gene values (alleles) are exchanged. Crossover is typically implemented as a stochastic

operator whose rate is controlled by the crossover probability, a user-specified value. The crossover

probability specifies the likelihood that the two mates undergo crossover. If a crossover does occur,

two new solutions (children) may be produced as shown in Figure 7 (34:12-13).

Mates Children

1 !1 0j0 01 1o 1 11

Figure 7. Crossover Creates New Solutions

The effectiveness of crossover in producing new solutions is dependent on the diversity of the

population. If the mates have several differences in their bit patterns, there is a good chance that

new regions of the search space will be examined as the result of crossover. Since quite a substantial

"jump" may occur from the "parent" strings to the "child" strings, nothing like a tree or graph

control structure is used with a genetic algorithm.

Notice, though, if the portions exchanged are identical, neither solution changes. In terms of

a search, crossover which does not yield new solutions is very undesirable. When a population has

converged (all solutions nearly identical), the search stagnates.

18

2.2.3.4 Mutation. Mutation, another stochastic operator, helps to maintain diversity

in the population by altering allele values of the strings in random locations. By allowing genes that

have disappeared from the population reappear, mutation provides an "insurance policy against

premature loss" of an allele value (73:181). For example, say a population of binary strings evolves

so that all strings in the population have a 1 in the third position of the string. Using crossover

alone, a 0 never again occurs in the third position, so a portion of the search space essentially

becomes "closed off" to further search.

lowever, mutation often cannot provide a solution to premature convergence. Mutation is a

very disruptive operator. In a population of "good" solutions, a mutation is very likely to produce

a more inferior solution. To avoid an essentially random search (23:10), mutation rate is typically

set to a very low values (.001 is a typical value) (18:15).

2.2.3.5 Inversion. Inversion is a unary operator that inverts the bits between two

random locations in a string (34:21). An inversion operator requires a more complex data structure

since the position must be inverted as well as the bit value (34:166-167). Due to the overhead

associated with inversion, it is rarely used in practice. It is only mentioned here because it played

a part in Holland's proofs of robustness and efficiency.

2.2.3.6 Other Operators. Several other genetic operators have been developed (34:147-

208). For example, since the standard crossover operator tends to produce invalid tours in the

Traveling Salesman Problem (TSP), a new crossover operators such partially matched crossover

were developed which guarantee valid tours (39:154-156). Since ordering problems like the TSP are

not considered in this thesis effort, and the other operators are seldom used, they are not considered

further.

2.2.3.7 Effect of the Application of the Operators. Notice that crossover and mutation

have orthogonal roles within a genetic algorithm. Whereas crossover and mutation tend to increase

19

diversity by changing the bit patterns, selection tends to increase uniformity by giving more pop-

ulation slots to fitter strings in the next "generation." The combined effect of the operators is a

search process that allows for improvement by searching new regions of the solution space, but

which also focuses on regions offering the greatest promise (47:13-16).

To arrive at a "good" solution in a reasonable amount of time, it seems a careful balance has

to be maintained. If crossover and mutation dominate, "natural selection" could be subverted as the

search becomes overly random. If the selection dominates, a only a limited portion of the search

space may be searched before the population becomes too uniform to produce better solutions.

Control of the "trajectory" of the genetic algorithm falls under the domain of the adaptive plan,

discussed next

2.2.4 The Adaptive Plan and Algorithms. An adaptive plan specifies a set of genetic opera-

tors (47:121-123). Subordinate to an adaptive plan are subclasses which specify how (e.g., in what

order) the genetic operators are to be applied. Each subclass is a genetic algorithm (47:122-123).

As there are numerous variations in the operators and their application, there are numerous genetic

algorithms. Hence the plurality in the name of this field of study.

One genetic algorithm, called by Goldberg the simple genetic algorithm (34:59), seems to be

the most commonly used. The simple genetic algorithm has performed effectively against problems

of practical import (34:10) through the use of only reproduction (evaluation and selection), crossover

and mutation 3 . DeJong used a simple genetic algorithm in his important research on functional

optimization (19). An examination of Grefenstete's Genesis genetic algorithm, a popular genetic

algorithm package (41), shows it to be a simple genetic algorithm.

In Genesis genetic algorithm, the genetic operators are applied as follows (41):

1. Initialize the population of strings. Random initialization is typically used.

3 Since Goldberg does not specify an algorithm, only the use of a set of operators, he seems to be talking about
an adaptive plan rather than an algorithm. As the same set of operators may be applied in various ways, each way
being a new algorithm, a single adaptive plan has many algorithms as subclasses.

20

2. Evaluate the strings in the population.

3. Perform selection on the population.

4. Apply crossover with a probability specified by the crossover rate to the entire population.

5. Apply mutation with a probability specified by the mutation rate.

6. If the some termination criteria is met, exit. Otherwise, go to step 2.

One iteration of the evaluate-select-crossover-mutate loop is called a generation. A survey of the

literature shows by far the most common termination criteria is the completion of a user-input

number of generations.

2.2.4.1 Implementation Adjustments to a Genetic Algorithm. An interesting thing to

note is that in a genetic algorithm, the goal appears to maximize the average population fitness

rather than individual fitness. In fact, due to the action of the genetic operators, "the best individual

encountered so far may not even survive into the next generation" (20:170). This seems contrary

to the goal cf an optimizing search. So while no attention is paid to the best solution in the

algorithm above or Holland's adaptive plans (47:92, 95), in practice a the genetic algorithm should

include a test in each generation for the best overall solution. Such a test for the best is included

in Grefenstette's Genesis genetic program (41).

2.2.4.2 Controlling Genetic Algorithms. The algorithm presented in the last section

must be "instantiated" before it is executed. That is, various parameters such as the crossover

rate, mutation rate, and population size must be specified. Adjusting these parameters influences

the behavior of the resulting genetic program. While varying parameters such as crossover and

mutation rate often provides some means of alleviating too great a focus or too much random-

ness, apparently an effective balance cannot always be achieved: "Premature convergence-loss

of population diversity before before optimal or at least satisfactory values (solutions) have been

found-has long been recognized as a serious failure mode for genetic algorithms" (24:115).

21

2.3 Behavior of Genetic Algorithms.

2.3.1 Holland's Theoretical Results. Problems such as premature convergence did not seem

to be predicted by Holland's theoretical analysis of genetic algorithms. While the details of the

Holland's proofs will not be presented here, the results are quite interesting. Holland showed there is

"implicit parallelism" 4 associated with a genetic algorithm. In general terms, "implicit parallelism"

is "the simultaneous allocation of search effort to many regions of the search space according to

sound principles" (42:20). Implicit parallelism results from the independent processing of schema

in the population of strings (47:71-72). A schema is a "similarity template describing a subset of

strings with similarities at certain positions" (34:19). For example, the schema *111* represents

a set of four strings, {01110, 01111, 11110, 11111}. Holland's Schema Theorem asserts that his

particular genetic algorithm propagates "highly fit, short-length schemata (building blocks) from

generation to generation by giving ezponentially increasing samples to the best" building blocks

(34:20), while below average schema "rapidly decline in numbers" (42:21).

Holland also showed that the Schema Theorem remains in effect in a genetic algorithm employ-

ing proportional selection, crossover, inversion and variable mutation, regardless of the complexity

of the fitness function (47:129). In this sense, he showed this specific class of genetic algorithms to

be robust (47:121-140).

2.3.2 Empirical Results. Interestingly, a simple genetic algorithm does not belong to the

class of algorithms used by Holland in this robustness proofs. Looking again at Section 2.2.4, we

see the simple genetic algorithm does not have an inversion operator. In fact, no actual genetic

algorithm surveyed in the literature uses the specific algorithm (47:122) on which Holland based his

proofs. This does not necessarily mean the genetic algorithms used in practice are neither robust nor

efficient, only that they have yet been proven to be so. Grefenstette and Baker have attempted to

4This is not the type of parallelism that could be directly exploited by a parallel computer.

22

extend Holland's theoretical results to practical implementations of genetic algorithms, yet further

effort is needed to "characterize the behavior of good genetic algorithms" (42:26).

Fortunately, most empirical evidence attests to the effectiveness of genetic algorithms. Baker

performed extensive testing on a class of genetic algorithms he called reliably consistent (RC)

genetic algorithms (42:25), a class which seems to include many of the genetic algorithms reported

in the literature. As the class of RC genetic algorithms use crossover, mutation, and various

forms of selection, they include the simple genetic algorithm. Applying RC genetic algorithms to

several functional combinatoric and functional optimizations problems, Baker "shows that for any

such genetic algorithm, empirical tuning of the parameters defining the selection method yields an

algorithm with high performance" (42:25) (2). GA-hard problems seem to give genetic algorithms

difficulty, however.

2.4 GA-hard (Deceptive) Problems.

In his doctoral research, Albert D. Bethke demonstrated that a simple genetic algorithm is

not well-suited for certain functions (4). The class of functions he studied are known as Walsh

functions, of practical importance since "any real-valued function defined on bit strings ... can be

written as a Walsh polynomial" (26:188). Bethke formulated Walsh functions having misleading

schemata (building blocks) that drove the simple genetic algorithm to sub-optimal solutions (4:78-

90). Several other researchers have studied and formulated functions inherently difficult for the

simple genetic algorithm (31:74-88) (74:434-440) (16:166-173) (26:182-189) (48:196-203). These

functions have come to be called GA-hard or deceptive. Use of inversion to improve performance

against GA-hard problems was found to be inefficient (8:397-405).

To deal more effectively with GA-hard problems, a new type of genetic algorithm, known as a

messy genetic algorithm, was developed by Kalyanmoy Deb of the University of Alabama, Bradley

23

Korb of McDonnell Douglas Space Systems, and David Goldberg of the University of Illinois. From

an evolutionary perspective, the differences between the two algorithms are as follows:

* Simple Genetic Algorithms. Short term evolution. All solutions are of the same species. That

is, the solutions have the same number of genes. The strings are also completely specified in

that each is a complete solution to the problem, having no redundant or contradictory alleles.

Evolution is concerned with making solutions increasingly optimal.

" Messy genetic algorithms. Long-term evolution. The starting population consists of "building

blocks" that underspecify the problem. Genetically, building blocks are a "lower form of life"

than a a fully-specified solution. The genetic operators act to create solutions that more fully

specify the problem.

These difference translate to substantial differences in terms of data structures and operators

(Figure 8). A more detailed explanation of the terminology and. operation of the messy genetic

algorithm is contained in Chapter 3, but such radical differences between the two algorithms suggest

little opportunity for design or code reuse in developing a messy genetic algorithm.

Simple Genetic Algorithm Messy Cenetic Algorithm
String Data Fixed Length Variable Length
Structure
Genetic Operators Crossover, Mutation, Cut and Splice

(sometimes) Inversion
Evolutionary Phases Generations Primordial, Juxtapositional
Population Size Constant Variable

Initial Population Fully-specified] Under-specified

Figure 8. Some Differences between Simple and Messy GAs

The preliminary results suggest the effort is justified. A sequential LISP version of a messy

genetic algorithm returned the optimal solution for several GA-hard functions, while the simple

genetic algorithm returned the sub-optimal results (38:28-29). The researchers have yet to devise a

24

proof of convergence to optimality, but their promising early results have caused them to recommend

the application of messy genetic algorithms to problems of practical importance (38:28-29).

Before attacking large combinatoric optimization and other practical problems, parallelizing

the code would be very desirable. A full parallel implementation would have logarithmic time

complexity, a significant improvement over the sequential algorithm with its polynomial time com-

plexity (38:27). Additionally, the strain put on the memory resources by a messy genetic algorithm

could be alleviated with a parallel implementation (Deb, Goldberg, and Korb had to resort to the

use of subpopulations when memory resources were exceeded (37:438)). AFIT's iPSC/2 Hyper-

cube has over 80 Mb in total node heap space, much greater than the memory resources on any

workstation or mainframe computer at AFIT.

2.5 Parallel Genetic Algorithms

Most of the discussion until now has dealt with how well genetic algorithms perform in terms

of solution quality. Efficiency is an important consideration as well. Despite the non-exponential

time complexity of genetic algorithms, at times they cannot meet time limitations against problems

requiring large population sizes (73:177) or having complex evaluation functions (63:155). To reduce

the execution time of genetic algorithms, several researchers examined parallel implementations of

genetic algorithms. Since parallel implementations of genetic algorithms differ from their sequential

counterparts, often different solutions are obtained. Fortunately, in most cases the solutions are at

least as good as those returned by the sequential version.

2.5.1 Past Research zn Parallel Genetic Algorithms. Goldberg gives an excellent summary

of the many diverse application areas in which genetic algorithms have been used (34:127-129). The

parallel implementations Goldberg mentioned, top r with several implementations reported since

the publication of his book, are shown in Figure 9.

25

Year I Investigators Description

Parallel Genetic Algorithms
1976 Bethke Brief theoretical investigation of possible

parallel GA implementations
1981 Grefenstette Brief theoretical investigation of several

parallel GA implementations
1987 Cohoon, Hegde, Martin, and Simulated parallel implementation

Richards of optimal linear arrangement
1987 Jog and Van Gucht Combined knowledge-based

and parallelized GA
1987 Pettey, Leuze, and Grefenstette Parallel GA on Intel hardware

using De Jong test bed
1987 Suh and Van Gucht Localized selection in parallel GA search

on the TSP
1987 Tanese Parallel GA implemented on 64-node

NCUBE computer
1989 Robertson GA on Connection Machine used for t. olution

of rules for letter sequence prediction
1989 Pettey and Leuze Showed that sending a random individual to

nearest neighbors every generation maintains the
efficiency associated with sequential GAs.

1989 Brown, Huntley, and Spillane Hybrid of GA and simulated
annealing (SA) used on the nodes of a Hypercube
to solve the Quadratic Assignment Problem (QAP)

1989 Muhlenbein GA implemented on transputer system gave best
solution known for the largest published QAP

1989 Gorges-Schleuter GA implemented on transputer system using
ladder topology gave better solutions
than SA for the TSP

1989 Manderick and Spiessens Found no optimal population size for
a GA implemented on a Connection Machine

1989 Tanese GA on a Hypercube gave a near linear speedup
and better solutions for Walsh functions
than a sequential GA

1991 Cohoon, Martin, and Richards Obtained linear speedup on a Hypercube

using GA with local selection for
the K-Partition problem

1991 Collins and Jefferson Local selection and mating found more

adept at finding multiple optimal solutions
than global selection/mating

1991 Davidor Proposed a torus topology to promote quick

convergence of subpopulations
1991 Husbands and Mill GA for scheduling problem having string for

each component job rather than entire schedule (typical)
to take fuller advantage of parallelism

1991 Muhlenbein, Schomisch, and Born "Superlinear" speedup in terms of time to

find best solution for a GA using local
hill-climbing on a MEGAFRAME HyperCluster

1991 Spiessens and Manderick Linear time complexity of fine grained
algorithm made large populations feasible

Figure 9. Applications and Implementations of Genetic Algorithms

26

2.5.2 Hypercube Implementation Details. All Hypercube implementations of genetic algo-

rithms reported in the literature use a nodal algorithm similar to the following (73:179):

BEGIN
Generate initial population
For gen = 1 to G loop ; G = maximum generations

Evaluate fitness of solutions
Reproduce population
Perform crossover based on crossover rate CR
Perform mutation based on mutation rate MR
IF (gen mod E = 0) THEN ; E = Epoch (generations between exchange)

Choose solution(s) for exchange with other processors
Send solutions to other processors
Receive solutions from other processors
Integrate received solutions into population

END IF
END

2.5.3 Analysis of the Hypercube Implementation.

2.5.3.1 The Decomposition. Looking at the decomposition, one sees that these Hy-

percube implementations are not really a single genetic algorithm. The reason for saying this is

these implementations have multiple, virtually independent genetic algorithms running in parallel.

So in fact, there is no decomposition of the genetic algorithm into parallel components, but rather

an integration of separate genetic algorithms into a meta-type algorithm. None of the operations

involved in a sequential genetic algorithm are truly parallelized (Figure 10).

2.5.3.2 The Population. Using the decomposition above allows the simultaneous search

of n populations of size M (where n is the number of nodes in the Hypercube and M is the pop-

ulation size used in the sequential version). Since n solutions from n genetic algorithms can be

compared and the best selected, there is a definite potential for better solutions than from a

single genetic algorithm. However, depending on the amount of communications overhead, the

parallel version might be slower than the sequential version. Here is definitely a different mind-

27

"Meta-

Algorithm"

[Genetic [Genetic Genetic

Algorithm Algorithm .. . Algorithm

Selection Selection M Selection I IMutation

rossover rossover Crossover

Figure 10. Typical Hypercube "Decomposition" of Genetic Algorithm

set-normally the goal of parallelizing an algorithm is to allow solution of the problem in a lesser

amount of time.

However, most users of Hypercube genetic algorithms attempt to achieve speedup. For ex-

ample, Tanese distributed the population among the nodes of the Hypercube, giving each node

a population size of M/n (73:180). With this data decomposition, Tanese achieves near-linear

speedups and "comparable performance" in terms of solution quality (73:181).

Tanese's results are unsettling in that Goldberg has put forth analytical arguments suggesting

there is an optimal population size for binary-coded genetic algorithms (30). Recall that the genetic

algorithms executing on the nodes of the Hypercube are essentially sequential genetic algorithms

with a communications step added. It seems logical that the population size that is optimal for the

sequential implementation would be the optimal population size for each nodal genetic algorithm.

If this is true, using a nodal population size equal to the optimal sequential population size divided

by the number of nodes (that is, a non-optimal population size) would result to inferior solutions.

28

Adding to the confusion is that experimental results using a similar Hypercube implementation on

the De Jong functions "corroborated" ' the theoretical predictions (63:156).

2.5.3.3 Premature Convergence. However, use of sub-optimal population size is not

mentioned as a cause of premature convergence when it occurs in a Hypercube genetic algorithm.

Instead, one researcher cites the selection strategy while cites the communication strategy as possi-

ble causes. Pettey points out that in a parallel genetic algorithm, selection is carried out on a local

(nodal) basis, rather than a global basis. Such a local selection strategy has "no theoretical basis"

(63:156). Tanese notes that the solutions that are exchanged between the nodes are in effect given

more offspring than selection alone would allow (73:179). As a result, there is a greater potential

for domination of a population by a locally optimal solution (premature convergence) (73:179).

The parameter settings, communication strategies, and speedup reported for various coarse-

grain implementations reported in the literature are shown in Figure 11. The wide variation in

parameter settings and strategies is indicative of the high degree of empiricism associated with

practical applications of genetic algorithms. NN represents communication with nearest neighbors.

Unreported information is indicated with a "?".

Citation Problem Standard Parameters Dim Communications Speedup
G CR MR P (d) E Details

(14:148-154) Optimal Linear 100-300 0.5 0.05 80 2 2 and 50 15 solutions Linear
Arrangement to NN

(63:155-161) DeJong's functions 100 ? ? 50 0-4 1 Best wFNN ?
(73:177-183) Walsh function 1000 0.6 0.008 4 0 0 / 2 d 0-6 2 and 5 10-20% of pop. Near

with 1 NN Linear
(64:398-405) De ong's functions 100 ? ? 50 3 1 1 random ?

with NN Linear
13244-248) Partition Problem 1500 05 0.1 80 4 50 9 random w/NN Linear

(60:271-285T Functions ? 0.65 0.3 20 2,3,6 10 Best w/NN "Super-
Linear"

Figure 11. Details of Coarse-Grain Implementations

'De Jong function f2 (Rosenbrock's saddle) was the exception.

29

2.6 Directions Taken Based on Literature Review.

As the goal of the Genetic Algorithm Toolkit it to provide a robust search package. Currently,

only the standard genetic algorithm is included in the Toolkit 6 . As a result, the Toolkit is subject

to the limitations associated with the simple genetic algorithm. One limitation is that both simple

and parallel simple genetic algorithms have show the occasional tendency to prematurely converge

on inferior solutions. Additionally, GA-hard problems are inherently difficult problem for simple

genetic algorithms.

To broaden the scope of the Toolkit, the premature convergence and GA-hard problems

should be addressed. As premature convergence in parallel genetic algorithms has not yet received

much attention, and messy genetic algorithms have yet to be parallelized, research in these areas

was thought to be worthwhile.

6The permutation genetic algorithm has been paralletized, but not been tested.

30

III. Methodology -- Examination and Reduction of Premature Convergence.

3.1 Introduction.

This chapter describes and justifies the methodology used to address premature convergence in

a problem of practical importance. Section 3.2 discusses the function known as Rosenbrock's saddle,

and justifies its use in research concerned with finding ways of reducing premature convergence. To

gain insights into the problem and the operation of the genetic algorithm, some preliminary testing

was performed. The results of the tests and their analysis are presented in Section 3.3. Section 3.4

offers arguments suggesting the use of global selection on a Hypercube as a means of alleviating

premature convergence. Section 3.5 presents the steps taken in iniplemen ing giu ,a! belcction.

3.2 Target Problem - Rosenbrock's Saddle.

3.2.1 Justification of Choice. Rosenbock's Saddle, also known as De 3 ong function f2, has

long been used as a litmus test of genetic algorithm performance (19) (34) (63). This function was

originally developed by H. H. Rosenbrock for his study of gradient-based step search techniques

(69). Rosenbrock's saddle was chosen as the test problem for the following reasons:

" Premature convergence was observed when Rosenbrock's saddle was applied to a Hypercube

implementation of a genetic algorithm (63:156-158). While premature convergence is generally

said to be a problem with genetic algorithms, this is the only tangible instance documented

in the literature.

• Pettey offers no discussion as to why Rosenbrock's saddle is a difficult problem for genetic

algorithms. In particular, is Rosenbrock's saddle GA-hard? Other researchers have since ex-

amined the search space of Rosenbrock's saddle (24:120), offering reasons why such a function

is difficult for a genetic algorithm (see next section), but apparently not GA-hard.

31

* Pettey offers no suggestions on how the observed premature convergence might be alleviated.

He does point to lu, . sclcetion n,.rhanism as a possible cause of the premature convergence

(63:156).

" In a study directed at reducing premature convergence in sequential genetic algorithms,

Rosenbrock's saddle was the lone function in a suite of test functions whose premature con-

vergence was not alleviated using a strategy that prevented similar solutions from mating

(24:115-122). As a result, further study on this function was urged (24:120).

" Pettey sized his populations close to Goldberg's theoretical recommendations (63:156) (30).

While the results of the other functions he examined "seemed to corroborate Goldberg's

theory," the optimal solution to Rosenbrock's saddle was not found in a range of populations

sizes that included the theoretical optimal (63:156-158). An experiment determining the

optimal population size for Rosenbrock's saddle, if such an optimal exists, would be useful

from a theoretical standpoint.

" Rosenbrock's saddle has practical importance. Rosenbrock's saddle belongs to a class of

functions typically associated with the control systems used in air-to-air missile guidance,

tracking, and oscillation control in aircraft (57). Considered a very difficult function to

optimize, it is routinely used as a standard against which to judge the performance of gradient-

based search using the penalty function approach. If a search strategy performs well against

Rosenbrock saddle, it is very likely it will perform well against all functions in this class

(57). Hence the motivation to improve the performance of the genetic algorithm against this

problem.

3.2.2 De.scription of Rosenbrock's Saddle. Rosenbrock's saddle is a non-linear, non-convex

function of 2 variables, having a deep parabolic valley:

f2= 100*(x
2 -y) 2 -(l -x) 2

32

Figure 12 shows a linear plot of the saddle. The inverted log plots (Figures 13 and 14) and

contour map (Figure 15) of the function show the depth of the "valley."

The first term of the function is completely symmetric about the x-axis, having a minimum

of at point zatisfying the r,,ation y = x2 . The second term, which is much less in magnitude than

the first term, introduces slight differences in the functional values along the parabola (Figure 16).

Since the ,econd term has a minimum of zero only at the point x = 1, the composite function has

one minimum at the point x = 1, y = 1. The differences in the values along the parabola will not

be very large, especially relative to the maximum values (poor solutions).

The function is continuous, having an infinite number of solutions. To allow for a solution by

a genetic algorithmic, the solution space must be parameterized. For this study, the genetic code

consists of an x- and y-substring parameterized so their resolution is 0.001 and their range is from

-2.048 to 2.047. To represent the 4096 numbers in this range, a 24-bit binary string is used, with

12 bits (2'2 = 4096) for each parameter.

3.2.3 Why is Rosenbrock's Saddle Difficult for a Genetic Algorithm? Looking closely at the

function gives one some insight as to why a genetic algorithm might prematurely converge. While

a total of 224 solutions exist in parameterized search space, there are only 2000 points along the

parabola. That is, 2000 sets of x and y satisfy the relation y = z 2 , meaning just 2000/(224) = 0.012

per cent of the points are along the parabola. It is unlikely one of the parabolic points will be

generated in the initial random generation of solutions. But notice the steep fitness gradient

leading to the parabola. Such a clear increase in fitness makes it likely the genetic algorithm will

find ne or mor p...t. ong thc parabola. Sinice the points on the edge of the parabola are so

superior relative to other points, once one is found it will dominate the genetic population unless

even better solutions are quickly found.

Once on the saddle, though, the genetic algorithm is likely to have difficulties finding the global

minimum. Genetic algorithms tend to be weak at localized searches since the genetic operators

33

2~2

2 -2

Figure 12: Linear Plot of Rosenbrock's Saddle

34

10

Figure 13: Log Plot of Rosenbrock's Saddle - Front View

35

-2

100

Figure 14: Log Plot of Roeenbrock's Saddle - Rear View

36

Fiue1:CnorPo2o oeboksSdl

13

Figure l6: Second Order Term

38

(crossover, mutation, and inversion) are very disruptive. So rather than "walking the tightrope" of

the parabola towards more optimal solution, the search repeatedly climbs and falls off the saddle.

As there is no mechanism in a genetic algorithm to prevent redundant search, the genetic algorithm

is liable to search only a narrow portion of the search space.

While one can see why the function might be difficult for a genetic algorithm, the function

is not GA-hard. GA-hard functions are characterized by an isolated global maxima (4), and such

is not the case here. So one suspects that a simple genetic algorithm could be used to find better

solutions. The strategies to be used are justified in the next section.

3.3 Preliminary Experimentation and Analysis.

To gain insights into the solution space of Rosenbrock's saddle and the performance and

operation of the simple genetic algorithm, the following preliminary experimentation and analysis

was performed using an enumerative search program.

3.3.1 Justification. The relatively low dimensionafity (224) of the parameterized search

space made it amenable to enumerative search on the Hypercube. The enumerative search provided

insights and information regarding the following areas:

1. The cost. involved in encoding-decoding the parameters in a To isolate .Iae cost of encoding

the parameters as a binary string, two enurmerate searches-one which required decoding and

one which did not-were carried out on the Hypercube binary string.

2. A benchmark for judging the efficiency of the genetic algorithm.

3. The relative degree of optimality of previous solutions to the problem (Section 3.3.4).

The results and an analysis are contained in the following sections.

39

3.3.2 Binary Encoding/Decoding is an Expensive Operation. Two enumerative searches were

carried out on the Hypercube. The first search encoded the variables as a binary string using the

same data structures as in Grefenstette's genetic algorithm. As in the genetic algorithm, the

binary string has to be first decoded before being evaluated. In the second search, no such encod-

ing/decoding was required since the variables were represented by decimal digits. Both searches

were partitioned among the 8 nodes of the iPSC/2 Hypercube. The run times are shown in Fig-

ure 17.

Search Run Time (sec)
Binary String 2525
Decimal 166

Figure 17. Enumerative Search Run Times

Since the the search space is the same in both cases, the difference in the run times may be

attributed to the decoding required with the binary strings. In this respect, the genetic algorithm

is handicapped relative to the enumerative search. Just searching a smaller part of the search space

is not necessarily sufficient for the genetic algorithm to be faster than the enumerative search. The

execution times imply the search space covered by the genetic algorithm must be much smaller.

3.3.3 Enumerative Search has no Redundancy. Another factor supporting the enumerative

search is the fact that there is no redundancy. The exhaustive nature of the search is rightly cited

as being undesirable. But while each possible solution is considered, it is only considered once. In a

genetic algorithm, no mechanism exists to prevent redundancy. A solution produced and evaluated

in the first generation may be repeatedly produced and generated in subsequent generations.

The inefficiency associated with the binary representation and redundancy must be countered

by the selection mechanism which "guides" the search.

40

3.3.4 Existence of Local Minima. Pettey's sequential genetic algorithm converged at about

0.0005. All his parallel results were worse (63:158). Knowing only of the existence of the global

minima of 0, really does not give a good idea of the effectiveness of the search. Are there any

intermediate solutions in the parameterized search space? The more intermediate solutions there

are, the worse the genetic algorithm performed. The enumerative search found 165 solutions less

than 0.0005.

3.4 Justification of Global Selection on Hypercube.

3.4.1 Theoretical Basis. In a "true" genetic algorithm, selection is based on an individual's

fitness in relation to the entire population. The expected number of offspring of an individual Ahis

equal to its fitness Ph divided by the average fitness of all individuals Ph/-P (47:94):

expected offspring = ph[-!

Since the average fitness is simply the total fitness M Ph divided by the total number M

of offspring (47:94), the previous equation may be written as follows:

Ph*M
expected offspring- M

h=1 Ph

expected offspring Ph * M
Total Fitness

Now say a node of a Hypercube has X individuals on it. The expected number of individuals

on that node in the next generation is obtained by summing expected number of offspring for each

individual on the node:

expected population = Zh=1 Ph * M
Total Fitness

41

Defining the sum of the individual fitnesses on a node to be the nodal fitness gives the

following:

expected population Nodal Fitness* M
Total Fitness

Recall each node of the Hypercube is typically assigned M/n offspring and this population

size is held constant. Now let us define a term called population deviation to be the absolute

difference between the expected population size and the constrained population size, M/n:

population deviation = expected population - M/n

3.4.2 Example. Consider a typical Hypercube PGA (parallel genetic algorithm) with a

global population size of 200. Each node of the Hypercube is assigned a population size of 50.

If after a particular generation the nodal fitnesses are 20, 40, 10, and 30 (global fitness = 100, aver-

age fitness = 25), the expected population and expected population error are as shown in Figure 18.

So the nodes with above average nodal fitnesses are given fewer offspring than "natural selection"

Node Fitness Expected Population Constrained Population Deviation
0 20 40 50 -10
1 40 80 50 +30
2 10 20 50 -30
3 30 60 50 +10

Figure 18. Deviations from Expected Population Sizes Using Local Selection

would call for, and the nodes with below average fitnesses too many. Here is a key difference from

the sequential genetic algorithm, in which no such "deviations" occur.

Most parallel implementations of a program are functionally equivalent to their sequential

counterpart, only faster. A parallel genetic algorithm (PGA), on the other hand, is fundamentally

different than a sequential genetic algorithm (SGA). As such, the performance in terms of solution

quality are likely to differ. While it has been shown theoretically that a PGA still can search a

42

search space efficiently (64), the "lessons learned" gathered over the past 15 years in the use of

sequential genetic algorithms might no longer apply. That is, if the SGA and PGA are different,

and effective parameters have been discovered for use with the SGA, at the very least one would

want to re-validate that they are still effective when the code is converted to a PGA. On the other

hand, if the SGA and PGA are functionally equivalent, no such re-validation would be required.

This situation is one reason for investigating global selection in this research effort. Global

selection would make solutions compete for population slots with solutions on the other nodes

rather than just locally. Thus, global selection in a PGA would be functionally equivalent to

the selection mechanism in a SGA. Since the SGA outperformed the PGA against Rosenbrock's

saddle, the hope is that global selection will improve the PGA's performance against this problem.

Having variable population sizes on the nodes may prove beneficial as well. Studies have shown

that there is typically an optimal population associated with a genetic algorithm. Since the optimal

population size is not generally known, experimentation is required to determine it. Perhaps by

allowing population sizes to vary, an optimal population distribution will evolve.

Global selection would not make a PGA identical to a SGA, though. In a SGA, crossover may

occur between any two nodes. Allowing crossover between solutions on different processors would

require substantial communications. For example, with nodal populations of 100 and a crossover

rate of 0.6 on a 8-node Hypercube, on average (100) * (0.6) * (7/8) = 52 of the solutions would

undergo crossover with solutions on other nodes. Doing this on a Hypercube, with its relatively

high communications cost, would likely lead to very high run times, so global crossover will not be

considered.

3.4.3 Answering Objections to Implementing Global Selection. Before beginning a full-scale

examination of global selection, testing was done to give confidence that the arguments given in its

support were justified. Two likely objections and their arguments are presented, along with test

results which refuted the objections.

43

* Objection 1: In practice, the expected population error is zero or close to it.

- Argument: Each node typically is run with the exact same adaptive plan, and each node

has the exact same population size. So each node will produce good and bad solutions

with equal probability. As a result, even though the exact same individuals will not

be produced on the nodes (due to different random number seeds), the nodal fitnesses

remain roughly equal.

- Disproof of Objection by Example: Figure 19 shows the population changes observed

on two of the eight nodes of a Hypercube when global selection was implemented. The

starting nodal populations sizes were 300. Population sizes vary rather significantly.

With the typical PGA, the population sizes would have been held constant at 300. This

would not have been "natural."

550 1 I I I

Node 0
500 Node 1 .

450

400

.. .350
Population

Size ...300 <

250

150 1 1

0 10 20 30 40 50 60 70 80
Generations

Figure 19. Population Sizes not Constant

e Objection 2: Global selection would lead to "instability." An initial small difference in fitness

would quickly result in one node getting the entire population.

44

- Argument: A difference in fitness, even a small one, would result in one or more nodes

getting more individuals in the next generation. Everything else being equal, having

"more grist for the mill" would make it likely that the node(s) with more individuals

would produce even better solutions during crossover and mutation, resulting in the node

being allotted even more individuals. This process would escalate ("domino effect"), and

one r two nodes would quickly get most of the population. Due to the tremendous load

imbalance, run times would not be competitive with the typical PGA (inherently load

balanced).

- (ountering of Objection by Example: Figure 20 shows that an initial above average

nodal fitness does not necessarily lead to complete domination. Run times are some-

what slower, though, because load imbalance did generally occur. The amount of load

imbalance is dependent on the random number seed.

440 -I

420 Nod 0

400

380 -

320

300 < %O

280

260 I I I I
0 10 20 30 40 50 60 70 80

Generations

Figure 20. Population Changes are not Monotonic

45

As the preliminary findings did not show global selection to be feasible, it was decided to

implement various global selection strategies in the hope that this would reduce premature conver-

gence.

3.5 Experimental Design.

3.5.1 Code Reuse. The decision to reuse existing code was an easy one. Grefenstette's

Cenesis genetic algorithm (4 1) is programmed in C, a language well-suited for use on the Hypercube.

Additionally, the modular design of Genesis (Figure 21) facilitates modifications. Since Unity

is often used in the program design at AFIT, a Unity representation of the Geneszs was also

constructed (Figure 22). Sawyer parallelized this code for a term project (71) using the typical

Hypercube decomposition. Sawyer's code became the foundation for the Genetic Algorithm Toolkit

and for research into ways for reducing premature convergence.

Main TheBestop Fl i Replace

Initialize Select : uae Cosvr Eiit Evaluate Measure

Figure 21. Structure chart of the Parallelized Genesis Genetic Algorithm

46

Program Genetic
declare

the-best :integer; {the best solution found)
gen : integer; {the current generation being considered}
type allele is 0,1 {a bit in the genetic code)
type structure is record {type for a gene (solution))
begin

gene: array[1..MAXSTRUCTSIZE] of allele
{MAXSTRUCTSIZE is max. length of a gene)

perf : integer;
{perf is the value obtained when the genetic code is decoded)
{and applied to the function being optimized)

end record;
type solutions is array[1..POPSIZE] of structure
pop : array[I..MAXGEN of solutions;

{A population (pop) has POP-SIZE genes)
done : array[-I..MAXGEN-I] of boolean;

{(lone is a boolean array used to ensure a population I
{is not evaluated until after it is created. MAX-GEN is}
{a constant indicating the number of generation cycles}
{which will be completed in search of a solution)

initially

the-best = 0;
gen = 0;

pop = initialize(pop);
{initialize is a function that creates initial values for genes}

(II gen : I < gen < MAX-GEN :: done[geni = false)
{ No generation is completed)

done[-1] = TRUE; {to prevent boundary error on 1st generation)
assign

(II gen : 0 < gen < MAX_-GEN :: pop[gen],gen, the-best,done[gen]
crossover(mutate(select(pop[gen]))), gen + 1, evaluate(pop[gen]), TRUE

if done[gen-1] = TRUE)
select-reproduce, mutate, and crossover (functions))

{must be done in this order and only if this process has}
{been completed on the previous generation}
{evaluate compares the-best with all solutions)
{in the current population and should a better)
{solution exist, it replaces the-best with it)

the-best := evaluate(pop[MAXGEN]) if done[MAXGEN-1]
{a boundary condition notice quantified assignment)
(does not evaluate last population)

cud { ;enetic}

Figure 22. Top-Level Unity Design of a Genetic Algorithm

47

3.5.2 Code Evaluation. Prior to conducting the experiment, the code was tested for errors.

Since Grefenstette's code has been in the public domain for quite some time, the testing concen-

trated on the changes Sawyer made to parallelize the code (71), principally those changers dealing

with parallel random number generation and communications.

1. Parallel Random Number Generation. The stochastic features of a genetic algorithm are

implemented with a pseudo-random number generator (see discussion in Appendix A). The

random number generator was examined in detail due to its importance in a stochastic algo-

rithm like a genetic algorithm. Experimentation with input seeds showed that for small seed

values, the nodes returned identical (and generally poor) solutions. The method of assigning

random number seeds to a node was found to allow for identical seeds, resulting in redundant

search. The details on how this was corrected are contained in Appendix A. Additionally, a

chi-square test for randomness was performed, which the random number generator passed.

The details of this test are also contained in Appendix A.

2. Communications. The fitnesses of communicated solutions were being somehow set to 0. This

resulted in disproportionate reproduction and the appearance of finding the global optimum

on every run. A minor change corrected this problem.

3.5.3 Implementation of Global Selectzon. Selection in a genetic algorithm involves allotting

population slots based on "survival of the fittest." Crossover and mutation generally result in

significant changes in the population. Without a selection mechanism, the population would consist

of a random mixture of good and bad solutions. Selection provides direction to the search by

creating a new population in which the number of slots allocated to a solution is proportionate

to its fitness relative to other population members. So to perform global selection, global fitness

information was required. The steps involved were

48

1. Calculate the total fitness of solutions. The command gdsum (global, double-precision floating

point sum) was found to do this quite efficiently. Benchmark tests showed a gdsurn to take 1.56

ms, so even when performed each generation, calculating total fitness was a small percentage

of the execution time (see execution times in the Chapter IV).

2. Determine the worst fitness. This being a functional minimization problem, the smaller the

value returned by the function, the fitter the solution. One way of converting a low functional

value to a high fitness value is by subtracting the functional value from a large number. In his

Genesis program, Grefenstette subtracts the functional value of a solution from the functional

value of the worst solution. In conjunction with performing global selection, the global worst

solution had to be found. To do this, each node made a call to the Hypercube function

gdhigh with its local worst solution as a parameter. The global worst solution value was

returned. Since global commands require the nodes to be temporarily synchronized, the

gdhigh command was placed immediately after the gdsum command, so the nodes would not

have to be re-synchronized.

3. Calculate expected values. The average fitness of a solution Ph/-i was calculated by dividing

the total fitness by the total population size. The expected values of each solution Eh was

then calculated as follows:
Worst -

Worst - pih/ii

4 Probabilistically create a new population based on expected values. The most intuitive way

of implementing this is with a roulette wheel. Each solution is given a number of slots on the

wheel in proportion to its fitness. The wheel is then spun and the solution on which it stops

is added to the new population. This process is repeated until all population slots are filled.

"Spinning wheel" selection, also known as "Stochastic Sampling with Replacement (SSR)"

(1:15), was the method of choice of Goldberg in his work (34). While SSR has the positive

quality of rii l.ciag biased (that is, selection probability = expected value), it is relatively

49

inefficient, having a time complexity of O(N 2) typically (N=Population Size) or O(NlogN) if

a B-tree is used (1:14-15). To improve efficiency, Baker developed a new selection algorithm

called "Stochastic Universal Sampling which is bias-free and has a time complexity of O(N)

(1:16-17,19). A C code fragment is as follows:

ptr = Rando; /* Wheel pointer set equal to random number [0,1] *1

for (sum=i=0; i < N; i++) /* N is the size of the population */

/* increment ptr until > expected value E */

for (sum += E[i]; sum > ptr; ptr++)

Select(i); /* include individual in new population */

Grefensttete used SUS in his Genesis code. A disadvantage of SUS for a parallel computer

is that it is "strictly sequential" (1:16). To perform Baker's algorithm on a population dis-

tributed among the nodes of a Hypercube, one node would have to generate the initial random

value of the pointer, calculate the expected values of its population values, then pass on the

current values of the ptr and sum values to the next node. This node would calculate its ex-

pected values, then again pass on ptr and sum to the next node. This process would continue

until all nodes have performed selection. The time complexity O(N) and communications

complexity is O(N). Strictly speaking, Baker's claim that SUS is nonparallelizable is correct.

Yet if a little "sloppiness" is allowed, Baker's algorithm can be parallelized. When a node

completes selection, the ptr variable would be greater than sum, but the difference would be

less than one. Rathe. than sending values of ptr and sum in sequence, each node could set

ptr equal to a random number between 0 and 1, and sum to 0. Again, ptr would be greater

than sum with a difference less than 1. Of course the values would not be the same as in the

"strict" version. Since no communications are used, the time complexity is O(A), where A is

the largest population size. Using the roulette-wheel analogy, if Baker's original algorithm is

50

like spinning one large wheel, the parallel version is similar to spinning one smaller wheel on

each processor (Figure 23).

Node 0 0.75N spins

B

N spins

Node 1 0.25N spins.. _
Baker's sequential selection Parallel Version

Figure 23. Parallelizing Baker's Algorithm

To allow global selection, the data structures for the populations had to be modified to

accommodate variable populations. For simplicity, large fixed arrays with a counter for the

current populatio!, zize were used. The intent was that if global selection was found effective,

the population data structure could be converted a more space efficient linked-list structure.

51

3.5.4 Parameter Settings/Selection Strategies.

1. Repetitions. Trial runs showed that solution quality is quite dependent on the random number

seed (Figure). For the variable-population schemes, run times were also quite dependent on

the seed. To get maximum-likelihood estimates, it was decided to take averages over 40 runs.

2. Standard Parameter Settings. A crossover rate of 0.6 and a mutation rate of 0.001 are

the most frequently mentioned settings in the literature, probably because these generally

return good results. While increasing the mutation rate might be tried to reduce premature

convergence, the disruptive nature of mutation would seem at odds with staying close to the

narrow parabola of Rosenbrock's saddle. So it was decided not to vary the crossover and

mutation rates, but rather to use the settings mentioned above. Instead, it was decided to

vary the population size. Goldberg suggests using large populations with parallel genetic

algorithms, and the population sizes used in the past were quite small. A large population

would seem more resistant to premature convergence since it would take longer for a locally

optimal solution to dominate the population. Thus it was decided to vary the nodal population

size to see whether superior solutions to those reported by Pettey could be obtained.

3. Total Generations. Since the optimal value of function f2 is known, the genetic algorithm could

be stopped as soon as the optimal solution is found. It was decided not to do this. Knowledge

of the optimal result is not normally available, otherwise the search would not be conducted.

Using this information would hide one of the genetic algorithm's biggest weaknesses-lack of

an adequate stopping criteria. Following the example of most implementations in the litera-

ture, it was decided to terminate the genetic algorithm after a fixed number of generations.

All of Pettey's runs had converged long before 100 generations (63:147). Since the strategies

used in this research were expected to delay convergence, it was felt if the genetic algorithms

were terminated after 100 generations, productive search might still be ongoing. To avoid

premature termination, the genetic algorithms were terminated after 200 generations.

52

4. Communications. To maximize the effect of communications, for good or bad, it was decided

to send the best solution on a nde to all nodes rather than the just the nearest neighbors.

In benchmark tests, the global communication (using the gsend command) was found to be

quite efficient, taking an average of only 1.56 ms on an 8-node Hypercube. In fact, the global

communication of solutions was found to take no more time than exchanging solutions among

the 3 nearest neighbors (using 3 consecutive csend commands and a preliminary calculation

to determine nearest neighbors). Evidently, Intel has employed an efficient tree method to

implement global send, requiring just log28 = 3 steps to complete. To clearly demarcate the

effect of a coniniunication in the strategies in which solutions were exchanged, it was decided

the epoch length should be 5 generations. Had solutions been exchanged every generation,

there would be no basis of comparison.

5. Strategies. The five strategies used were

(a) Local with Sharing (LS). Selection is local and the best solutions are shared as above.

The resulting genetic algorithm is similar to the Hypercube implementations reported

in the literature (63) (73).

(b) Local with No sharing (LN). Selection is local and solutions are not shared. So the nodal

genetic algorithms are completely independent. The fact that this strategy is equivalent

to 8 separate sequential genetic algorithms guarantees improvement over Pettey's results,

in which 1 sequential genetic algorithm outperforme(the parallel implementation.

(c) Global with Sharing (GS). Selection is global and the best soil,t~rns are shared L; in LS.

(d) Global with No sharing (GN). Selection is global and no communication of solutions

occurs.

(e) Global, no sharing, Parallel select (GP). Selection is global, no communication of solution

occurs, and Eaker's selection algorithm is parallelized.

53

3.5.5 Data Gathering. In choosing what data to gather, an attempt was made to focus on

the information most pertinent to an optimization problem. Two common "criteria of goodness"

often used to gauge genetic algorithm performance are on-line performance and off-line performance

(34:107,110). On-line performance is a running average of the fitness of all solutions. Off-line

performance is the average of the best solutions from each generation. Neither really seemed to

focus on the most important solution-the overall best solution. In an optimization problem,

generally one is not interested in several good solutions, but the one best solution.

To reflect this goal, rather than gathering data on on-line and off-line performance, the focus

was placed on the overall best solution. During each generation, each node saved its best solution.

No averaging was done as with off-line performance (this would "mask" the overall best solution

with the inferior "best" solutions from early generations). At the completion of the run, the

solutions from the nodes were compared, and the global best solution from each generation was

retained. In this way, the evolution of the overall best solution through the 200 generations was

charted.

Two additional measures were made. First, the run time of the genetic algorithm through 200

generation on the node was recorded. Notice this excludes the strategy-independent time it takes

to load the nodes and to communicate the solutions/data to the host. Comparing the run times

would show the relative efficiencies of the different strategies. Additionally, each node recorded the

generation in which its best solution was found. At the conclusion of the run, the generation in

which the overall best solution was found was retained.

Trial runs showed that solution quality is quite dependent on the random number seed.

For the variable-population schemes, run times were also quite dependent on the seed. To get

maximum-likelihood estimates, averages over 40 runs were taken.

54

IV. Results of Premature Convergence Reduction Strategies

4.1 Introduction.

This chapter summarizes the results of the application of the local and global selection strate-

gies described in the previous chapter. Comparisons are made between the selection strategies in

terms of solution quality, execution time, premature convergence, and the likelihood of returning

the optimal solution. Additionally, the Goldberg's theoretically predictions of optimal population

size are compared to the experimental results.

4.2 Data Compression and Interpretation.

Figures 72 - 87 show the evolution of the best solution averaged over 40 runs for various

population sizes. Figures 88 - 103 show the average, variance, and standard deviation of the best

solution, the generation in which the best solution is found, and the run time for the 200 generations.

The following observations can be made:

" Rosenbrock's Saddle is not an "intractable" problem for a parallel genetic algorithm. The

LS strategy found the optimal solution by generation 180 on all .10 runs at a population

size of 3200 (Figures 87 and 103), and in at least 36 of the runs in population above 1920.

Additionally, the optimal was found in a high percentage of the runs for all strategies at the

higher population sizes.

* There is some agreement with Goldberg's theoretical predictions as to an optimal population

size. Goldberg has developed a theory concerning the optimal population size of a binary

coded genetic algorithm (30). Developed originally for sequential genetic algorithms, the the-

ory predicts solutions will improve up to the optimal population size, then solution quality

will deteriorate or show -o improvement. For a 24-bit string used with Rosenbrock's saddle

(function f2), the predicted optimal population size is 51 (63:155-156). While Pettey's results

55

seemed to corroborate the theory for other test functions, Rosenbrock's saddle was the ex-

ception (63:156). The results here seem to indicate that the optimal population size for f2 is

much higher.

Goldberg has since revised his theory to include predictions for the optimal population size of

parallel genetic algorithms (35). For the degree of parallelization and string length used in this

implementation, Goldberg predicts an optimal population size of approximately 2000 (35:75).

The optimal population sizes for two of the three strategies that do not share solutions (LN

and GN) as well as and GS show good agreement with Goldberg's theoretical predictions. The

optimal population sizes for the various strategies in terms of the average best solution are

shown in Figure 24. Figure 25 shows the optimal population sizes for the various strategies

in terms of the propensity in finding the optimal solution. Regardless of whether local or

Strategy LS LN GS GN PN
Average 0.0 3.01 * 10-' 3.65 * 10-6 4.75 * 10 - 7 4.00 * TO
Pop. Size 3200 1920 2880 3200 1920

Figure 24. Optimal Population Sizes in Terms of Solution Average.

Strategy LS LN GS GN PN
Best, = Optimal 40 31 39 30 29
Pop. Size 3200 1920 2560 3200 1920

Figure 25. Optimal Population Sizes in Terms of Finding Global Best.

global selection is used, sharing of the best solution seems to increase the likelihood of finding

the optimal solutions. The GS strategy, while generally the poorest in terms of the average

best solution, is second only to LN in returning percentage finding the optimal. Evidently, a

few poor solutions adversely affected the average.

Sharing of best solutions leads to premature convergence at low population sizes. As shown

in the Figures, the strategies that use communication return generally poorer solutions than

56

strategies that do not. There is less useful search over the 200 generations, as indicated

by the fact that LS and GS find their best solution earlier than the strategies that do not

communicate. This would be welcome if the solution was as good as or better than the

solutions from the strategies that do not communicate, but this is not the case.

" Sharing of the best solutions enhances finding the optimal solution at larger population sizes.

Even though the average of the best solutions returned by the different strategies may be

similar, the strategies that communicate solutions are more likely to find the optimal. In

fact, strategy GS, while generally the poorest in terms of average, is second only to LS in the

likelihood of finding the optimal. The average of the best solutions returned by GS is tainted

by a few inferior solutions.

" Comparing the global select strategies, we see that the strategy that communicates best

solutions (GS) is actually faster than the strategy that does not (GN). While this may seem

counter-intuitive given that communication takes time, the effect of the communication is a

better load balance. When the nodes do not share solutions, should one node find a relatively

good solution, this quickly results in a higher nodal fitness and consequently a greater nodal

population size. While this increases the likelihood of finding even better solutions on the

node with the larger population, the nodes with smaller populations have a lesser likelihood.

As a result, the imbalance tends to perpetuate and even increase. One the other hand,

should the node finding a good solution share it with other nodes, the chance of a fitness

and population disparity is lessened. Intuitively, it would seem that the more often sharing

occurs, the less the load imbalance, and vice versa. Notice that, the nodes exchange the same

number of solutions which other. That is, the load balancing achieved by communication is

indirect rather than direct.

" In 13 of the 16 population sizes used, a strategy using global select outperformed the strategies

using local select in terms of the average best, solution. The exceptions were at a population

57

size of 80, 960, and 3200. Thus, the global strategies tended to be more "robust." A user not

knowing the optimal population size would have been been better off using a global population

strategy.

" In terms of run time, the strategies using local select were vastly superior. The load imbalance

associated with the global select, while leading to a favorable population distribution, does

adversely affect run time. Looked at another way, the local select strategies can operate on

larger populations in the same amount of time than the global selection strategies on smaller

populations.

* This leads to the following question: Given the same amount of run time, which strategy will

produce the best solution on average? The results in Figure 26 show that under this criteria

the strategy LN generally returns the best solutions.

.1 I

LS -4-

0.01 LN ---
GS
GN x

0.001 PN A

Best
Solution

le-05

le-06 X x X

le-07
0 20 40 60 80 100 120

Time (sec)

Figure 26. Best Solutions versus Run Time

As indicated by the high standard deviations in the best solutions, solution quality was very

dependent on the random number seed seed. For example, Figure 27 shows the best solutions

versus the random number seeds for the 40 runs of strategy PN at a population size of 960.

58

0.0006< , , , _

0.0005

0.0004

Best
Solut io(.0003

0.0002

0.0001

0,
0 5 10 15 20 25 30 :35 40

Seed(i)

Figure 27. Solution Quality is Dependent on Random Number Seed.

A status of the static analysis of the parallelized Genesis code suggests that the execution

time of the program should vary linearly with the size of the population, regardless of the selection

strategy used. A plot of the experimental data Figure 28 suggests that the linear relationship holds

in practice. The inethod of least square was applied to find the straight lines that best fit. the data.

The rtesulhs of the least squares calculations are shown in Figure 29, with t the execution time in

seconds and P the total population size. To test the validity of the assumed linear relationship,

the correlation coefficient was calculated. The correlation coefficient r, also known as the index of

association, is a measure of the strength of tile linear relationship between two variables (51:75).

Values of r Fo close to 1 (Figure 29) indicate a very strong positive association between the execution

tine alld population size (51:72). Thus. tile substantial improvements in solution quality came at

the expense of just linear O(P) increases in execution time.

59

120 I I 1

LS 0
100 LN + x "1

GS 0 x []
80 GN x xPN A

T im e 60x A

(sec) 60 x l

x A
40 0 A

20 -

04
320 640 960 1280 1600 1920 2240 2560 2880 3200

Generations

Figure 28. Execution Time Varies Linearly with Population Size.

Strategy Least Squares Equation r r
LS t = 0.0 15383P+ 0.165297 1.0000 1.0000
LN t =0.015218P+ 0.045728 1.0000 1.0000
GS t =0.029985P+ 1.815469 0.9699 0.9999
GN t =0.033180P + 2.545763 0.99,t6 0.9992

PN = 0.023491P+ 1.096119 0.999, 0.9995

Figure 29. Least, Squares Regression Equations.

60

4.3 Why the Results were not Generalized.

It woul be desirable to extend the results observed in this research to all applications of

genetic algorithms, but it was thought impossible to do so. Figure 30 shows that an adaptive plan,

like the ones used in this research, belongs to the power set of genetic operators. The operators

may be applied numerous ways to form subclasses of non-deterministic genetic algorithms (NGA).

The instantiation of the non-deterministic algorithms with parameters such as the mutation rate,

crossover rate, and population size creates a genetic program ready for execution on a computer.

Each parameter may be varied throughout its range, each variation creating a new genetic algorithm

(GA). By varying only the selection strategy and population size, the behavior of only a very tiny

subset of the universe of genetic programs was observed. Additionally, the genetic programs were

applied to only one solution space in the universe of solution space. So while it may be conjectured

that, say, increasing population size always reduces piermature convergemce, this could not be stated

definitively.

4.4 Suimmary.

This chapter presented experimental results obtained when genetic algorithms using selection

strategies LS, LN, GS, GN, and PN. The presentation focused on the two most important criteria for

a semi-optimal search strategy-solution quality and execution. Additionally, an examination of the

experimental optimal populations sizes revealed fairly good agreement with Goldberg's theoretical

predict ions.

61

7E P(W)

N(GAj NGA, 1 j NGA, NGAj~j NGA,,

GA, .

Universe of Solution Spaces

Figure 30. Genetic Program Universe.

62

V. Methodology & Design - Messy Genetic Algorithm.

5.1 Introduction.

To ensure the description of the messy genetic algorithm as reported in the literature (36)

(37) (38) was being correctly interpreted, a design and implementation of a sequential messy genetic

algorithm preceded the parallel design and implementation. This chapter describes the sequential

design and implementation, while the next chapter does the same for the parallel implementation.

The design and implementation proceeded in increasing levels of detail, and such a methodology

is reflected in the layout of this chapter. Section 5.2 discusses the general requirements of a messy

genetic algorithm. In Section 5.3, the high !evel design, in which the problem is decomposed into the

required objects and operations, is presented. The design is further refined in the section on the low

level design (Section 5.4), in which time and space tradeoffs among various data structures and their

associated algorithms are discussed. Section 5.5 presents a structure chart and algorithms which

served as the blueprints for the coding of the messy genetic algorithm in C. Finally, Section 5.6

discusses the problem chosen to validate the messy genetic algorithm.

5.2 Problem DZscusszon.

The messy genetic algorithm is a general problem-solving tool which returns a semi-optimal

solution. The user must tailor it to the specific problem by developing a means of encoding so-

lutions to the problem using symbols (genic alphabet). The user must also provide an evaluation

function which assigns a "fitness" to a string based on well the strings solves the problem. Once

the parameter associated with encoding the solution are specified, the genetic algorithm performs

operations intended to construct a "semi-optimal" solutions to the problem.

A more formal specification of a program than that given above would be desirable. This

was not done because of the inability to specify a postcondition detailed enough to describe the

63

effect of a messy genetic algorithm. Section 5.7 discusses the reasons for the lack of a satisfactory

postcondition.

5.3 High Levei Design.

Goldberg and his associates give a high-level description of messy genetic algorithms in their

three papers on this subject (36:493-530) (37:415-444) (38:24-30). Based on the information pro-

vided in these papers, the following objects and operations are necessary:

5.3.1 Required Objects.

1. Strng. A string is a candidate solution encoded in a form similar to a chromosome. This is

done so the string will be amenable to the genetic operations of cut and splice. A chromosome

consists of genes have a value (allele) and a position (locus). Similarly, a string in a messy

genetic algorithm consists of a list of pairs of numbers, one number specifying a value from

the genic alphabet and the other a position in the string. Goldberg represented the string

111 as ((1 1) (2 1) (3 1)), the first number in the pair being the position, the second the

value (37:417). A key difference from the simple genetic algorithm is the string may be

underspecified or overspecified. That. is, the string may contain too few genes to completely

solve the problem (partial solution), or the string may contain redundant and/or conflicting

genes. Another difference is that the length of the string is variable. The cut operation

shortens the strings and the splice operation lengthens strings.

2. Population. A large number of strings exist concurrently in a messy genetic operation. During

the primordial phase, the number of strings is decreased at regular intervals. To facilitate an

operation such as this, a higher level object which encompasses all the strings is desirable.

The population is a variable-length list containing all the strings in the genetic algorithm.

64

3. Competitive Template. The competitive template is a "locally optimal" string used to assign

a fitness to under-specified strings. The competitive template is complete and non-redundant

solution to the problem. That is, the competitive template is neither under-specified or

over-specified. Once generated, the competitive template is constant in length and value.

5.3.2 Required Operations. The required operations are organized into the three main steps

of a messy genetic algorithm:

1. Initialize Population. Based on the user-inputs of the genic alphabet, the string length, and

the building block size, the population is initialized by generating all possible strings of length

building-block-size. These strings are known as building blocks.

2. Enrich Population. The purpose of this operation is to produce a high concentration of

good-quality building blocks. Population enrichment occurs during the primordial phase of

the messy genetic operation. To achieve the goal of an enriched population, the following

sub-operations are required:

(a) Selectively Reproduce Population. This involves creating a new population from the

current population, with strings that are fitter getting relatively more population slots

in the new generation. Goldberg suggests using tournament selection, a form of selection

which seems to inhibit super individuals from dominating a population (36:504-505).

Since the need to inhibit super strings is not an explicit requirement, the form of selection

to be used remains a design decision to be determined in low level design.

(b) Reduce Population Size. Since the initial population created by generating all combina-

tions of strings of length building-block-size can be very large, the population is halved

at regular intervals (36:509). There is nothing special about a 50 per cent reduction,

but the developers of the messy genetic algorithm got good results using this setting

(36:512-515). Additionally, they performed the reduction every other generation.

65

3. Generate Solution. Once a population of high-quality building blocks has been created, they

are then used to create solutions to the problem. This is known as the juxtapositional phase

of the genetic algorithm. The following operations are required:

(a) Cut. A pair of strings is chosen at random. A point is chosen at a random location

along each of the strings. Each string is then cut with probability, cut-probability. A

cut produces two shorter strings from the original string. Since the cut operation is

probabilistic, neither strings may be cut, one string may be cut, or both strings may be

cut.

(b) Splice. The splice operation ;- then performed on the strings resulting from the cut.

operation. A splice is the concatenation of two strings to produce a longer string.

Each pair of strings is considered in turn, a splice being performed with a probability,

splice-probability.

(c) Selection. Once the entire population has undergone cut and splice, the population is

reproduced using a selection operator as in the primordial phase.

(d) Test for Termination. While Goldberg does not mention a criteria for ending the pro-

gram, termination conditions must be defined and tested for. Possible ternunation cri-

teria might be a limit on the number of cut-splice-reproduce cycles (generations) or a

minimum requirement on solution quality.

The data flow diagrams in Figures 31 - 34 give a pictorial representation of the high-level

design. The data dictionary is shown in Figure 35.

66

buildingblock tsize p
[reduction -information :

evaluation-unction ialatostring-length M1Gnei

User juxtapositional(parameters Aeoitinh

genic-alphabet r lgorithm

solution

Figure 31. Context Diagram for a Messy Genetic Algorithm

(Primordial Phase)

evaluation-function ____ Enrich

reductioninformation Population

copttve-template

¢ l..,:..l __ \ initial-b u i l d i n g b l o c k s i z e I n i t ia.. . l i z e\ p o p u l a t i o n P P L T OUser stigegh !Population P ULTO

genie-alphabet

(Enumerative Initialization)

solution

j uxtapositional-parameters Genrat

Solutior, i---

(J uxtapositional Phase)

Figure 32. Level I Data Flow Diagram for a Messy Genetic Algorithm

67

competitive-template

Uiser evlain-ucinReproduce
Population

POPULATION

Decrease

Population

Size

2.2

Figure 33. Data Flow Diagram for Primordial Phase

68

cut-probability Cut

splicproba I it

Figuri? ~ ~ ~,n 34 aaFo iga o utapsitoa hs

69n

Data Element Name Definition
allele * *the value of a gene*

character from the genic-alphabet
building-block-size = *the "highest order suspected nonlinearity

suspected in the subject problem (36:505)"*
range: 1-stringlength

conipetitive-template = *a "locally optimal" string against
which other strings are judged*
string

cut-probability *the likelihood a string will be undergo
the cut operation*
range: O.O-.O/(stringlength)

cut-string - *a string that has just undergone
the cut operation
string

evaluation-function *a user-supplied function that assigns
a numerical value to a string based
on how well the string solves the
problem, i.e. f(string) - number*

gene *atomic unit of a string*
allele + locus

initial-population the starting population-consists of
all possible combinations of strings of
length building-block-size*

juxtapositional-parameter = *the settings of variables for the
juxtapositional phase*
total-generations + cut-probability + splice-probability

genic.alph abet = *the characters that may be assigned to
an allele - user input*
**

locus * *the position of an gene in a string*
range: 1--string/ength

POPULATION *all the strings currently existing in
the genetic algorithm*
2{string}

reduction-information *parameters controlling the reduction
of the population*
reduction-rate + reduction-interval + reducLion-total

reduction-interval *number of tournaments between a population reduction*
integer

reduction-rate *fraction by which a population is reduced in a reduction*
*range: 0.0-1.0"

reduction-total *total number of reduction the population undergoes*
integer

solution *the best feasible solution to problem found
by the messy genetic algorithm*
string

Figure 35. Data Dictionary for Messy Genetic Algorithm

70

Data Element Name Definition
splice-probability = *the likehood two cut-strings will

be concatenated*
range: 0.0-1.0

string = *a candidate solution to the problem encoded
using characters from the genic alphabet*
I allele + locus) = I{gene}

stringlength = *the length of a string that complktely
and non-redundantly specifies a solution
to the problem*
**

string-pair = *two strings randomly chosen to undergo cut
and splice*
2{string}2

total generations = *the number of cut-splice cycles
in the juxtapositional phase*

Figure 35. Data Dictionary for Messy Genetic Algorithm (cont'd)

71

5.4 Low-Level Design.

5.4.1 Programming Language. While the Ada programming language is available on AFIT's

iPSC/2 Hypercube, the intent is to eventually port the code to different machines, such as the Intel

i860 at the Vision Laboratory. Most Hypercubes do not have an Ada compiler. To have maximal

portability, the C programming language, which is commonly available, is used to code the messy

genetic algorithm.

5.4.2 Data Structures. Choosing data structures typically involves trade-offs between time

and space. An attempt was made to choose data structures so as to use space efficiently, but, also to

allow the operations involving the data structures to be efficient. After evaluating the requirements

of the enumerative initialization, primordial, and juxtapositional phases, no one set of data struc-

tures could be found that seemed to achieve a good balance between time and space. A closer look

shows quite a dichotomy between the data structure requirements of the initialization/primordial

and the juxtapositional phases (Figure 36).

Phase Initialization/Primordial Juxtapositional
String Length Constant Variable
Overspecification? No Yes
Fitness Constant Variable
Population Size Very Large Much Smaller
Population Changes Decrease Decrease at first,

I Only then Variable

Figure 36. Data Structure Requirements of the Different Phases of a mGA

Since the enumerative initialization and primordial phases complete before the juxtapositional

phase starts, data structures for the population could be t:tilored to the requirements of the partic-

ular phase. As is discussed shortly, such tailoring allowsd for greater time and space efficiency than

if one data structure had been used. The cost was a conversion between data structures between

the phases. A discussion of the considerations leading up .o the selection of the data structures

used in the mGA is contained in the next section.

72

5.4.3 Population Member. To represent a population member, some means to represent

the string (gene) in terms of its loci (positions) and alleles (values) was deemed essential. Other

information needed on the population member would be its fitness (for selection) and its length

(determines cut probability).

5.4.3.1 Enumerative-Primordial Phase. In the enumerative phase, short, fixed-length

building blocks are created. No changes are made to the length of the strings during selection

in the primordial phase. The only operation that might be performed on the string is a copy to

create the new population. Either a linked-list or array could have represented the string. But

it was noted that in the absence of operations that would modify the string, the string would

simply be a "place-holder" of information. So neither A.tructure would offer any time efficiency

over the other. The focus next turned to space efficiency, a very important consideration. Given

the tremendous number of population members generated during enumerative initialiiation (see

Section 5.4.4), a slight difference in the size of a population member would greatly influence the

overall space consumed. Size efficiency definitely favored the use of an array-type structure over a

linked list which would have required a pointer for each locus-allele pair.

Two array-type structures were considered for the loci. One structure would have used a

binary string equal in length to a complete string. To represent building-block, the binary bits at.

the associated positions in the binary string would be set equal to 1, and all other bits set equal

to 0. Notice such a structure would be feasible only in the initialization and primordial phases

since a binary string would be unable to represent the redundant loci (overspecification) permitted

pernitted in the juxtapositional phase. The other structure uses an integer array equal to the

building-block length. with each array element set equal to a locus position.

A choice of one of theses data structure over another was difficult because depending on the

string length and building block size, either structure could be more space efficient than the other.

73

Specifically, the binary approach is more space efficient for short strings, while the integer array

approach is more favorable for long strings (Figure 37).

The integer array approach was chosen because, everything else being equal, the initial pop-

ulation associated with a long string is larger than the initial population associated with a shorter

string. This is so because for 11 > 12, C(11 ,a) > C(12 ,a), where the 1i are string lengths a is the

building block size. So the different in size between the two representations is multiplied more times

when a long string is used than when a short string is used. As most genetic algorithms are encoded

with binary strings of at least length 20, it was decided to use the integer array representation.

As for the alleles, the initial inclination was to use a binary string, the typical means of

encoding a solution in the standard genetic algorithm. From a space efficiency standpoint, use

of a binary string was very attractive. On the other hand, use of such a representation would

prevent future experimentation with non-binary alphabets. Admittedly, binary alphabets are the

most widely used. One notable class of exceptions are permutation problems. For example, the

Traveling Salesman Problem, typically has as a genic alphabet a set of decimal numbers, each

representing a city. While the decision was difficult, to allow maximal flexibility in the choice of a

genic alphabet, initially a string of characters was tried. It was hoped other space saving measures

would make such a representation feasible.

As for the fitness and length of the string, the decision to include or exclude them was based

on their expected utility. Since evaluating the fitness of the string is a fairly expensive operation,

fitness values do not change (during the primordial phase), and fitness values were needed for

selection, it wac decided to include a field for the fitness. Doing this prevented the continuous

recalculation of a constant. As the cut operation is not performed until the juxtapositional phase,

a length field would have been of no practical value, so it was excluded.

5.4.;:.2 Juxtaposztonal Phase. Periodic reductions in population greatly reduce the

size of the population by the time the juxtapositional phase is reached. For example, Goldberg's

74

0 1 2 :3 4 5 6 7 S 9 10 11 12 13

0 10 10 0 00 0 1

2 bytes

1 5 11

12 bytes

Short String

Advantage-Binary String

1 1 1 1
9 9 9 9

0 1 2 3 6 7 8 9

25 bytes

0 1

1 198

,l by t es

Long String
Advantage-Integer Array

Figure 37. Alternate Loci Data Structures

75

juxtapositional populations ranged from 1/16th (36:514) to 1/80000th (37:438) the size of his initial

populations. Despite the significantly smaller populations, attention has to be given to memory

utilization, since now the strings generally grow in length.

Even with the expected strain on memory resources, a linked-list was seriously considered

for the juxtapositional phase string data structure. Initially, a linked list seemed very amenable to

the splice and cut operations. Breaking links and concatenating the resulting linked lists to other

link lists was thought, to be a very natural model of cut and splice. Use of a linked list seemed

attractive from an efficiency standpoint as well. If actual splicing and cutting are performed, the

time complexity of tile splice operation is 0(1) with a linked list versus an O(l + 12) for an array

an array (11 and 12 are the lengths of the two strings being spliced).

Yet further refinement of the algorithm showed that actual cutting and splicing of existing

strings would not occur. To increase the genetic material needed for longer strings, cut and splice

without replacement is called for. When two strings are selected for splice and cut, copies of their

genetic material (alleles and loci) are made and arranged as dictated by cut and splice. When

cutting and splicing are performed in this manner, the time complexity is the same whether a

linked list or array is used. Since the linked list requires additional memory for pointers that an

array does not, memory considerations dictated the selection of an array as the data structure for

the juxtapositional string-

Once an array structure was chosen for the string, the question became how and when to

allocate memory for the strings. The original inclination was to dynamically allocate memory for

the strings on as "a:-needed" basis. lowever, with the high probability for string lengthening

during cut and splice, additional memory is needed very often. As dynamic memory allocation can

be quite expensive in terms of time (59:372-373), a scheme which requires only an initial memory

allocation was chosen.

76

To use this scheme, the user must specify an overflow factor. The overflow factor is multiplied

by ttle iengt h of a fully-specified string to give the maximum length of a string in the juxtapositional

phase. At the start of the juxtapositional phase, two populations are created having arrays whose

string lengths are equal to the maximum length (only a fraction of the space is used initially). One

population is used as the current population whose members are subject to cut and splice. The

results of cut and splice are placed in the other population, thereby creating a new population. As

enough memory has been allocated to accommodate a full population of strings at their maximum

lengths, no further dynamic memory allocation is needed. If a splice operation should result in a

string greater than the maximum, the string is truncated.

One might question the truncating of solutions. But a string is evaluated by a left-to-right

scan, with only the first instance of a gene being used. If the overflow factor is set to say, 1.6, and

the problem length 30, the maximum string length is 48. It seems quite unlikely that much is being

lost by limiting the string length to 48. Most, if not all genes, beyond this length would be ignored

anyway. The reason for the shift in emphasis from space to time complexity is discussed more fully

in Section 5A.6.

Including a field for fitness in the string record was deemed quite important. Otherwise, 2*P,

fitness evaluations would have to occur during selection, where P is the size of the population

during the juxtapositional phase. Since cut and splice change the string length so often, the

excessive bookkeeping needed to maintain a length field was deemed undesirable, so a length field

was not included.

5 4.4 Thr Population Data Structure.

5.4.4.1 Dynamic vs. Static Memory Allocatwn. Since the string length, building-

block size, and genic alphabets to be used must be decided on before running the the genetic

algorithm, one strategy might be to used static data structure for the population. Constants for

77

these parameters could be set by the user, the program recompiled, and static data structures set

up upon invocation of the program. The run time of a program using static memory allocation

could very well be faster than a strategy which dynamically allocates memory during program

execution.

There are definite drawbacks to the static allocation strategy. Since change in one of the

parameters would affect the size of the population, the program would have to be edited and

recompiled each time a change was made. Change is very likely, too. Different applications typically

have different string encodings resulting in different string lengths. Additionally, experimentation

into the affect of modifying building-block sizes and cardinality genic alphabets would be hindered

by the recompilation requirement. Finally, as is discussed shortly, the initial population, while

initially very large, decreases substantially throughout the primordial phase of the mGA. Since the

memory apportioned to a static object remains allocated until program termination (29:35-36),

memory use would be inefficient.

A dynamic memory allocation scheme alleviates such difficulties. For a given application,

building-block size could be varied without recompilation. Should the encoding be changed due to

a change of application or use of new genic alphabet, only the module that evaluates the string

need be recompiled. Additionally, since the space assigned to the large initial population can be

reclaimed when it is no longer needed, memory use is more efficient (66:181).

Since extensive experimentation, application to diverse applications, and large, memory in-

tensive initial populations were expected, the dynamic memory allocation scheme was chosen. In C,

both arrays and linked list structures can be dynamically allocated. As an abstract list is typically

implemented using one of these two data structures, they were both considered as candidates.

5.4.4.2 Array vs. Linked List. Two data structures were considered for the popula-

tion of solutions-an array and linked list. The requirements did not justify the use of a more

78

extravagant, "space-hungry" data structure, such as a tree. The following considerations drove the

decision to use an array:

" No advantage to incremental population creation. With a linked list, memory could be allo-

cated one population member at a time, while with an array, the memory for the population

must be allocated all at once. If the tournament selection was without replacement, the in-

cremental capability of the linked-list would be an advantage. Taking a population member

from one population to another would allow memory use to remain approximately constant.

But this is not the case-tournament selection occurs with replacement. So population mem-

bers in one generation cannot be removed until the next population is completely filled. So

whether a linked list or dynamic array is used, at the end of a tournament, you have two

complete populations.

" No need to insert population members n any particular order. As there is no requirement to

keep the list, say, ordered in ascending order of fitness, there is no benefit in using a link list

over an array. Had there been such a requirement, using an array would have meant a costly

shift of array elements to insert solutions in their proper order.

* After the creation of the initial population, there is no potential for a larger population.

No mechanism exists for population growth during the juxtapositional phase. Instead, the

population is decreased at regular intervals (Goldberg halved the population every other

generation), for example (36:514). So there is no advantage to the capability of extending

a linked list indefinitely (until heap space runs out). Using a linked list, memory could be

recouped as the population decreases, while with an array empty population slots would be

left vacant.

The reason for doing this

" The array uses less space at the maximum population size. Enumerative initialization creates

a population of gk * C(I, k), where g is the cardinality of the genic alphabet, k is the building

79

block size, I is the length of a fully-specified encoded function, an C(I, k) is the number

of combina.ions of I objects taken k at a time. For even relatively small values of these

parameters, the initial population size will be quite large, straining the memory resources of

the target computer. In fact, in a problem requiring a large initial population, Goldberg was

forced to break vp the population into subpopulations requiring separate primordial phases

(37:438), presumably because of lack of memory resources. To avoid having to do this, the

data structure for the population should be as space efficient as possible. Using a linked list,

each population member would have a pointer to the next population member. An array only

has a pointer to the start of the array, allowing a substanti-d space savings. For exan.ee, in

a relatively simple problem having a string length of 30, a binary alphabet, and nonlinearity

(building-block size) of 3, an initial population of 32,480 is required. On most machines, a

pointer occupies about the same amount of space as an integer (50:102). Assuming 4 bytes

per integer, the linked list structure would require (32480 - 1) * 4 = 129.9 kB mor space

than the array structure. So using an array would extend the size of the initial population

that could be used before resorting to the undesirable subpopulation scheme.

9 Use of array allows the efficient use of an indexing scheme in reproducing the population.

This indexing scheme is discussed in the next section.

5.4.5 Minimzzing Memory Use During Primordial Reproduction. It has already been dis-

cussed how an array uses less space at the maximum population size than a linked list. Memory

utilization is still expected to be rather high. The upper bound of space utilization, which might be

called the -highwater mark" would occur as the initial population is reproduced for the first time.

At this point, the population has yet to be reduced in size, so the new population would contain

. C(1, k) population members as well.

The first strategy considered for reproduction was to have two arrays of population members,

one for the old generation, one for the new generation. Reproduction requires that fitness values

80

and strings be compared. So until reproduction is complete, it would be necessary to retain the

space held by the initial population (Figure 38). So during reproduction, memory necessary for

2 * (gk * C(1, k)) population members would be needed. Once reproduction is complete, the space

occupied by the initial population could be reclaimed since all information necessary for future

reproductions is contained in the second population.

Fitness Fitness
Popl(O) String Pop2(0) String

Fitness Fitness
Popl(1) String Pop2(1) String

Fitness Fitness
Popl(2) -0 Pop2(2)

String String
First

Reproduction

Fitness Fitness

Pop1(gk*C(lk)-1 String Pp2(g*C(l'k)-I String

Figure 38. Population Array Reproduction Strategy - "Highwater Mark"

To help overcome the large amount of memory used by two simultaneous populations, a simple

"hashing" strategy was developed. A couple of observations brought about the development of this

strategy:

1. In producing a new population during the primordial phase, no changes are made to the

strings.

81

2. Since no changes are made to the strings, their fitnesses do not change. This would not be

the case if the function being optimized was probablistic, but initially these functions would

not be studied.

Given these observations, it was noted that all population members in future populations could be

found in the initial generation. So rather than creating a new population array, an integer array

was used instead, with each integer referring to the index of a population member in the initial

population.

Since the initial population is the only source of information on string fitness or structure,

memory allocated to the initial population array cannot be reclaimed at the end of the primordial

phase. While the initial population does consume much memory, the indexing scheme results in

lower memory use at the "highwater mark." As with the first scheme, the "highwater mark"

occurs in the primordial phase, before the population size has been reduced in size. In this case,

though, there are three arrays at the "highwater mark"-the initial population, the first indexed

population, and the second indexed population (Figure 39). The initial population is needed

for string and fitness information, and the first indexed array is needed for information on the

distribution. Together they provide the information necessary to produce the next population

(second indexed array). Comparing Figures 38 and 39, the difference in the two schemes, then, is

one population array versus two integer arrays. As each population member uses more memory

than two integers, the indexed scheme is more memory efficient at the "highwater mark." In

addition to saving space, the indexed scheme is likely to be more efficient in terms of time. Had the

dual-population scheme been used, creating the new population would have required copying the

fitness, loci, and alleles of a population member as it was inserted into the new population. With

the indexed scheme, only an integer need be copied in inserting a member into the new population.

Based on the arguments given above, the indexed scheme was selected for use during the

primordial phase. During the juxtapositional phase, since the cut and splice operators change the

82

Fitness
Pop(O) String Indexl(O) Index2(0)

Fitness Index1(1) Index2(1) Index
Pop(1) String Indexl(2) Inde Index2(2)

FitnessPop(2)
String]

First Second

Reproduction Reproduction

]Fitness Indexl(gk*C(l,k)-1) Index Index2(gk*C(l,k)-l) In]
PoP(gk*G(1,k)l1) String

Figure 39. Indexed Reproduction Strategy - "Highwater Mark"

83

strings, the dual - population strategy had to be used. Initially, while strings were still short, the

use of this strategy did not put a strain on the memory resources. As the strings grew (due to

the cut and splice operations), checks were made to ensure the population did not exceed the heap

resources. If heap space is exceeded, the population must be decomposed into subpopulations.

5.4.6 Resolving a Possible Anomaly. One may wonder why such pains (with the use of

space-efficient data structures) were taken to taken to prevent memory shortages when dealing

with the initialization phase, and then simply to truncate strings when they got too long in the

juxtapositional phase. The reason for the care used in initializing the population is that, in the

absence of heuristic knowledge that would allow the elimination of some building blocks, the devel-

opers of the messy genetic algorithm are agreed that all combinations of building blocks should be

initialized (36:505). A key building block could be missed if not all building blocks are elaborated.

On the other hand, it seems unnecessary to let the strings grow without limit in the juxtapositional

phase when redundant genes at the ends of the strings are not considered in the evaluation.

5.4.7 Data Structure Feasibility. Preliminary tests were conducted to ensure the data struc-

tures selected would allow reasonably size problems to be initialized. The tests showed that each

node of AFIT's iPSC/2 Hypercube has roughly 10 MB of heap space, which allows approximately

412,000 population to be initialized per node (3,296,000 total). Figures 40 - 42 show the mem-

ory requirements and initial population sizes (P) for three building blocks sizes and a range of

string lengths (L). Notice that if a building block size of 2 is used, quite large problems can be

solved using AFIT's iPSC/2 Hypercube. However its 80 Mb of heap space is quickly exceeded with

building block sizes of 3 or 4. Should lack of memory resources prevent the solution of a problem

on AFIT's Hypercube, either another Hypercube (or any computer) with more heap space, or a

subpopulation scheme (37:438), could be used. Another alternative might be to remove the fitness

field from the string data structure, and instead calculate fitness on an "as needed" basis. The

additional calculations required would likely have a large impact on efficiency, but testing showed

84

that the elimination of the fitness field approximately doubles the size of the population that can be

initialized. Notice the iPSC/2 more that adequately met the memory requirements of the classical

problem (L = 30, block size = 3) used in this study.

P

7
1.75 10

7
1.5 10

7 320
1.25 10

7
1. 10

6

6
5. 10 80MD6

2.5 10

500 1000 1500 2000 2500 3000

Figure 40. Memory Requirements - Building Block Size 2

5.5 Algorithm Development.

This section contains the algorithms developed to implement a messy genetic algorithm as

described in the articles by Goldberg, Deb, and Korb (36) (37). Since the descriptions of many

85

p

7
3.5 10

7
3. 107 640 MD

7
2.5 10

7
2. 10

7
1.5 10 320 1&

7
1. 10 160 b

6
5. 10 so Mb

L
50 100 150 200 250 300

Figure 41. Memory Requirements - Building Block Size 3

86

P

7
6. 10

1280 I

7
5. 10

7
4. 10

7
3. 10 640 bb

7
2. 10 320 HD

7
1 io 1o b

40 60 80 100

Figure 42. Memory Requirements - Building Block Size 4

87

of the operations are at a high level, several dctails had to worked out in the development of the

algorithms. The validation results in the next chapter suggest the decisions made in creating the

algorithms were reasonable.

5.5.1 Messy Genetic Algorithm Executive. The messy genetic algorithm is organized into

three main phases-enumerative initialization, the primordial phase, and the juxtapositional phase

(36:505- 506). So a functional decomposition of the messy algorithm into the three phases seemed

very natural. To allow the user to change the parameters with recompiling, an input procedure

was included as well. This decomposition is reflected in the executive module of the messy genetic

algorithm. The algorithm is further decomposed in the sections that follow.

PROCEDURE Messy-Genetic Algorithm
J3FGIN

Getdnputs(out : building-block-size, stringJength,genic-alphabet);
Initialize(in : building-block.size, stringiength,genic.alphabet; out : initial-population);
Conduct-Primordial-Phase(in : initial-population; out : population);
ConductJuxtapositionalPhase(in : population; out solution);

END Messy-Genetic Algorithm;

5.5.2 Input Algorithm. Several several input parameters are needed to instantiate a messy

genetic algorithm. Generally, only a small subset of the parameters change between runs of the

messy algorithm. So it was decided to read input parameters from a file rather than prompt the

user for them. The resulting algorithm is as follows:

PROCEDURE GetInputs(out : buildingblock-size, stringlength,genic.alphabet);
BEGIN

Open Data File;
Read building-block -size;
Read string-length;
Read genic-alphabet;
Read max-generations;
Read juxtapositional-parameters;
Read reduction -information
Close Data File;

END GetLInputs;

5.5.3 Initialization Algorithm. The Initialization procedure directs the construction of the

competitive template and the initial population. It is decomposed into three algorithms. Gener-

88

ateCompetitiveiTemplate performs the operation indicated by its name. A competitive template

is needed to determine the fitness of an underspecified string. Creating the starting population

involves involves constructing all possible combinations of strings equal in length to the building

block size over the length of the string. Since this operation is quite algorithmically complicated,

it is further decomposed as follows:

1. CreateBuildingBlocks. This procedure generates all permutations equal in length to the
building block size using the characters from the genic alphabet. The set of permutations is
called the building-blocks.

2. CreateInitial-Population. From the set of all positions (loci) in a fully specified solution,
this procedure generates all combinations of positions having building-block-size members.
Distributing the set of building blocks over each combination results in the initial population.

The following algorithm reflects the decomposition discussed above:

PROCEDURE Initialize(in : building.block-size, stringlength,genic-alphabet; out : population);
BEGIN

GenerateCompetitiveTemplate(in : string-length, sweeps, genic-alphabet);
CreateBuilding-Blocks(in : building-block-size, stringlength,genicalphabet; out : building-blocks);
CreateInitial-Population(in : string-length,building-blocks; out : initial-population);

END Initialize;

5.5.3.1 GeneraleCompetitive_ Template Algorithm In the standard genetic algorithm,

each string fully specifies a solution to a problem. To evaluate the fitness of a string, one need

simply decode the string and examine the quality of the solution returned. Evaluating fitness in a

messy genetic algorithm is not so straightforward. In the primordial phase and throughout most

of the juxtapositional phase, the strings do not contain a full complement of genes, making direct

evaluation impossible. Randomly generating the missing genes was found to be "too noisy to detect

small signal [fitness] differences reliably" (36:518-521).

Use of a locally optimal solution, known as a competitive template, as a basis of comparison

between strings, alleviates the noise problem. To evaluate a string, the genes from the string

temporarily replace the corresponding genes in the competitive template. If the resulting solution

has a greater fitness than the locally optimal solution, the string causing the increase in fitness

89

"must be a building block" (36:522). This ability to distinguish between building blocks and

inferior partial solutions is especially important in the primordial phase.

No specific restrictions on the creation of a competitive template were made. Any method

that can generate a locally optimal solution can be used as a source of the competitive template.

Even the use of the standard genetic algorithm was suggested (36:523). For speed and simplicity,

a greedy method (36:522), was chosen. In this greedy algorithm, a initial solution is randomly

generated. To improve the solution, the the character (allele) values at locations along the string

are varied in random permutation order. The process of generating a random permutation and

alternating characters to improve the string is repeated sweeps times in the algorithm:

PROCEDURE GenerateCompetitive-qemplate(in : string/ength,sweeps, genic-alphabet);
integer locus = 0;
character alleles[stringiength];
integer loci[stringlength];
integer local-sweeps = 0;

BEGIN
Allocate enough memory for competitive-template (stringlength characters)
WHILE locus < stringJength

randomly select one of the characters from the genic-alphabet
and store in alleles[stringJength];

END WHILE;
REPEAT

Generate a random permutation of the positions (loci);
FOR each of the loci in order DO

change the value of allele[loci] to the other characters in the genic alphabet;
keep the character that results in the highest fitness;

END FOR;
local-sweeps = local-sweeps + 1;

UNTIL local-sweeps = sweeps;
END GenerateCompetitive-Template;

Note: competitive-template is a global -variable. This is done because several other procedures need
to refer competitive-template, but none of them change the value of the competitive-template.

5.5.3.2 Create__BuiidingBlocks Algorithm. Create-BuildingBlocks generates all pos-

sible building blocks of length building.block-size. For example, with a binary alphabet and a

building-block-size of 3, the output is the following array of strings:

90

000

001

010

011

100

101

110

111

A couple things to notice:

The generation of building blocks involves the generation of all permutations (with repetitions)

of characters in the genic alphabet. By the rule of product, if the building block length is b

and the number of characters in the genetic alphabet is g, the number of building blocks is

gb (44:5). Above, b is 3 and g is 2, so the number of building blocks is 2' = 8.

* The method of generation of the building blocks in the example lends itself to computer im-

plementation. Notice how often the characters change in each position. Calling the rightmost

position 0, the middle position 1, and the leftmost 2, we see position 0 varies every 1 time,

position I varies every 2 times, and position 2 varies every 4 times. Observe 20 = 1, 21 = 2,

and 22 = 4. Generalizing, each position in the binary building block varies every 2' build-

ing-block, for 0 < i < b, with i being the position in the building block. If the alphabet was

not binary, but an alphabet of :ardinality g, each position would change to the next character

in the alphabet every g' building block.

Using these observations, an algorithm was developed for generating the building blocks. Array

Vary has an entry for each building block position set equal to how often the position changes

g'. Array Index points to the current alphabetic character for that position. A building block is

created by concatenating each character pointer to by Index. A counter keeps track of how many

91

building blocks have been created. The counter is checked against all entries in the Vary array. If

a position needs to be varied, the corresponding entry in the Index array is set equal to the next

character. The algorithm is as follows:

PROCEDURE CreateBuildingBlocks(in : building-block -size, string-length,genic-alphabet; out : population);
integer card;

integer bbs = building-block-size;
integer Vary[bbs]; / /* How often to vary character at a position */
integer Index[bbs]; /* The current character at a position
integer Counter = 0;
integer i = 0;

BEGIN
Determine number of characters in genic-alphabet and set = to card (cardinality);
Allocate enough space for building-blocks = bbscard

WHILE i<bbs /* Initialize carry array */
Vary[i] (card)';
Index[i] 0; /*Index to first charact.r in genic alphabet*/
i + 1;

END WHILE
i= 0;
WHILE Counter< (card)bb

WHILE i<bbs
buildingblock[counter].string[i] = genic-alphabet(Index[i]);
i=i+ 1;

END WHILE;
i= 0;
WHILE i<bbs

IF (Counter mod Vary[i] == 0) THEN
Index[i] = (lndex[i]+l) mod (card - 1);

END IF
END WHILE;

END WHILE;
END CreateBuildingBlocks;

5.5.3.3 Create [nitzalPopulation Algorithm. This algorithm was the most complex

to develop. Since it is also likely to be the most difficult to understand, the explanation of its

development is quite detailed. Included are the general requirements, an alternative method, a

high level description of the algorithm, an example of the action of the algorithm on a simple

problem, and a lower level refinement of the algorithm.

Requirements. To complete the initialization of the population, it remains to

distribute the building blocks created by CreateBuildingBlocks over all possible combinations

92

(order is not important) of positions (loci) of the string equal in length to the building block size.

Using terminology from discrete mathematics, if the string is of length n and the building.block-size

is r, all combinations of the n loc* taken r at a time must be generated. The cardinality of the size

i n!
of combinations is. For a string of length 30 and a building block of 3, one combination

of loci is 5, 8, 23. One alphabet permutation (building block) combined with one loci combination

specify a single initial population member. Distributing the building blocks over all combinations

gives the initial population.

Alternative. In generating the loci combinations, the initial inclination was to use

recursion The reason recursion seemed a natural choice is that the task of generating combinations

of a set can be decomposed into two smaller combination problems. For if example, to generate

all the combinations of the characters in set {a,b,c,d,e} taken 3 at a time, one could append a to

all combinations of of {b,c,d,e} taken 2 at a time, and then generate all combinations of {b,c,d,e}

taken 3 at a time. The same decomposition could then be applied to the two smaller problems.

An examination of the recursive tree drove the decision not to use recursion. Such an examina-

tion can reveal whether the recursion would involve -edundant work and wasted space (53:297-302).

The recursive tree for the previous example is shown in Figure 43. The duplication of effort shown

in this small problem would be magnified in the much larger problems expected with messy genetic

algorithms.

5.5.3.4 Abstract Algorithm. To avoid the inefficiencies associated with recursion, an

iterative algorithm was developed. It was known from the start that such an algorithm could

be developed since every recurse algorithm has a corresponding non-recursive (iterative) version

(53:432-433). If recursion involves redundant effort, often the iterative version can offer a large

improvement in time and space efficiency (53:298-302).

93

({a,b,c,d,e},3)

a + ({b,c,d,e},2) ({b,c,d,e},3)

Redu(dant

b + ({cde},l) ((cde2,2) b + ({c,de},2) ({cd,e},3)

c + ({d,e},1) (f{d,e},2) c + ({d,e},1) (f{d,e),2)

{d} {e} {d} {e}

Fig!-,e 43. Recursive Tree Showing Redundant Effort

The iterative algorithm took advantage of the fact that order in a combination is not impor-

tant. To make the process of generation of combination algorithmic, an order may be arbitrarily

imposed. In the iterative algorithm, the positions in a combination are number from 1 to r, r being

building block length, and the restriction is that each locus in a combination is less than the locus

to its right. As a result of this restriction, if the building block size is r, the string length n, and

the loci numbered from 1 to n, then the highest locus value at each position a in a combination is

- - r + a. To start the process, the leftmost locus is given the lowest possible locus designation,

and each succeeding locus incremented by 1. For example, in a problem of length 5, the loci might

be numbered from 1 to 6. If r is 3, the initial combination would be 1-2-3 and the maximum locus

values at each position are 4-5-6. The algorithm to generate the combinations may be stated as

follows:

1. Record the set of numbers as a combination. If the rightmost locus is equal to its maximum

value go to step 3. Otherwise, goto step 2.

94

2. Increment the the rightmost locus. Goto step 1.

3. If all loci are at their maximum values, terminate. Otherwise, continue with step 4.

4. Start at the leftmost locus. Check all loci to its right. If the loci are at their maximum values

and the current locus is not at its maximum value, increment the current locus. Repeat for

all loci except the rightmost locus.

5. Start with the locus second to the left. Reset the value of the locus to one greater the value

of the locus to its left if that locus had just been changed. Repeat for all loci to the right

6. Go to step 1.

Example Problem. Consider a string with 5 allele positions and 3 building blocks.

Using the above algorithm, combinations are generated as shown in Figure 44. Observe the process

is similar to incrementing the low order decimal of a number then carrying to higher order decimal

as overflow occurs. This iterative algorithm composes each combination immediately, rather than

successively decomposing the problem as with recursion.

Algorithm Refinement. The algorithm presented in the previous section was re-

fined to smooth the transition to the computer. For the most part, the refinement involved the

addition of data structures to support the bookkeeping needed to track the locus value at each

position in a combination. To reflect the realities of the programming language (C), array indexing

was changed so the first element in the array is at index 0 rather than 1. Arrays upper and

lower specify the highest and lowest locus, respectively, that may be assigned to a position in a

combination. Each array is equal in length to the building block size. The algorithm is as follows:

PROCEDURE CreateInitialPopulation(in : block-size, in : string-length,out : population);
integer card;
long popindex = 0; /* The index of the population */
long combo; /* comb(x,y) = # of combinations of x taken y at a time */
integer upper[block-size];
integer lower[block.size];
integer loci;

95

1-2-3 (Start) Combination 1
1-2-4 (Step 2)

1-2-4 (Step 1) Combination 2

1-2-5 (Step 2)

1-2-5 (Step 1) Combination 3

1-3-5 (Step 4)

1-3-4 (Step 5)

1-3-4 (Step 1) Combination 4

1-3-5 (Step 2)

1-3-5 (Step 1) Combination 5

1-4-5 (Step 4)

1-4-5 (Step 5)

1-4-5 (Step 1) Combination 6

2-4-5 (Step 4)

2-3-5 (Step 5)

2-3-4 (Step 5)

2-3-4 (Step 1) Combination 7

2-3-5 (Step 2)

2-3-5 (Step 1) Combination 8

2-4-5 (Step 4)

2-4-5 (Step 5)

2-4-5 (Step 1) Combination 9

3-4-5 (Step 4)

3-4-5 (Step 5)

3-4-5 (Step 1) Combination 10

3-4-5 (Step 3) Terminate

Figure 44. Generation of Combinations

96

int i, j, a;
int total = 0;
boolean increment[block-size];
boolean finished = FALSE;
boolean firstflag = TRUE;

BEGIN
popsize = cardinalityblock-ji *comb(stringlength,block-size);
WHILE not (finished)

IF (firstflag) THEN
FOR (i = 0; i < block-size; i++)

upper[i] = (stringlength - (i + 1));
lower(i] = (block-size - (i + 1));
loci[i] = lower[i];

END FOR;
firstflag = FALSE;

ELSE
increment loci[0];
IF (loci[0] > upper[0]) THEN

increment[0] = TRUE;
ELSE

increment[O] = FALSE;
END IF;
FOR i = 1 to block-size - 1

/* Increment only if adjacent position needs to be incremented */
increment[i = ((loci[i = upper[i]) AND increment[i - 1]);

END FOR;
/*Increment the locus values as indicated by increment*/

FOR i = block-size - 1 DOWN TO 1
IF (increment[i - 1]) THEN

increment loci(i];
END IF;

END FOR;
/*Ensure each locus at index i is greater that the locus at i+1 */

FOR i = block-size - 2 DOWN TO 0
IF (loci[i] > upper[i]) THEN

loci[i] = loci[i + 1] + 1;
END IF;

END FOR;
IF (loci[block-size - 1] < upper[block.size - 1]) THEN

finished = FALSE;
ELSE

finished = TRUE;
END IF;

END IF;
increment total;

/******************Distribute building blocks on the combination*********/
FOR i = 0 to total-blocks - 1

population[popindex].allele = building-blocks[i];
FOR j = 0 to length of building-blocks

population[popindex].locusb] = locib];
END FOR;

97

evaluate the fitness of population[popindex].locus and
store in population[popindex].fitness;

IF (population[popindex].fitness > Best.fitness) THEN
SaveBest(population[popindex]); /*save solution*/

END IF;
increment popindex;

END FOR;
/***************************End Distribution*****************************/
END WHILE;
END Creat,-InitialPopulation;

5.5.4 Primordial Phase Algorithm. The goal of the primordial phase is a population en-

riched with high-quality substrings from which it can construct solutions in the juxtapositional

phase. One way of achieving this goal is to successively construct new populations by holding

"tournaments" between the strings. In a tournament, two strings are compared in terms of fitness,

with the more fit string being placed in the new population. The population is also reduced at

regular intervals. Since a goal of this research is to reproduce the results of Goldberg, Deb, and

Korb, the same method of population enrichment is used in the messy genetic algorithm developed

here. It should be pointed out, though, that there is no theoretical or practical requirement to

enrich the population in this manner. Other methods could probably be developed which achieve

a similar effect. However, in this initial study, the method of population discussed above was used

in the primordial phase algorithm:

Procedure ConductPrimordialPhase(in : initial-population;
out : population);

integer reductions = 0;
integer current-interval = 0;

BEGIN
WHILE reductions<total-reductions DO

IF (current-interval = reduction-interval) THEN
ReducePopulationSize by reduction-rate;
reductions = reductions + 1;

END IF;
ConductTournamentSelection(in : popsize;

in out : distribution[popsizel);
current-interval = current-interval + 1;

END WHILE;

98

Convert population member data structure from array to linked list;
END ConductPrimordialPhase;

5.5.4.1 Conduct Tournament Selection Algorithm. With problems having "nonuni-

form scaling" (37:423-426), using tournament selection without some restriction could cause high

quality building blocks of lower order subfunctions to be eliminated. Consider the function f(x, y) =

100x + y encoded as a binary string of length 6 with the first three bits the x parameter and the sec-

ond three bits the y parameter. Assume the competitive template is 000000. Assume the substrings

O0 l ddd and dddl 1I are selected to undergo tournament selection, where a d indicates missing bits.

Notice that O01ddd is a very poor building block relative to other possible building blocks specifying

x, but dddlll maximizes the y component. In terms offering a prospect of eventually constructing

an optimal solution, then, dddlll should be perpetuated (win the tournament). However, due

to the differences in scaling, when the partial solutions are overlaid on the competitive template

(yielding 001000 and 000111, respectively), decoded, and evaluated, O01ddd wins the tournament

(since f(2,0) > f(0,7)) and is placed in the new population.

To alleviate the problems associated with nonuniform scaling, a restriction that the substring

must have a threshold number of genes in common before undergoing a tournament (37:423-426).

The (arbitrary, but reasonable) choice was made that the threshold value should be equal to the

upper bound of the expected number of common bits between two random substrings. For a

problem of encoded length I and two strings having effective lengths (the number of nonredundant

genes) of A, and A2 , the threshold is calculated from [(A1 * A2)//g (37:426). Having selected the first

string to participate in a tournament, the question remains how many other solutions should be

considered in searching for a "compatible" mate. The number of solutions considered in search of

a mate is known as the shuffle number (37:424,427). Probabilistic calculations were again used to

show that a shuffle number equal to the string length I offers a "reasonable probability" of finding

99

a compatible mate (37:426-427). Again, it should be pointed out that there is no necessity to use

to use the values of the threshold and shuffle number mentioned here. These values were used in

this study because they were calculated using probability theory, seemed reasonable, and resulted

in optimal solutions. Additionally, a goal of this research was to first duplicate the original results

before attempting anything new.

The following algorithm for tournament selection includes the threshold restriction:

Procedure ConductTournamentSelection(in : popsize, shuffle-number;
out : distribution[popsize]);

integer distribution[popsize];
integer firstflag; /*Will be a static variable in C*/
integer permutation[popsize];
integer shuffle-number = stringiength;
integer threshold; /*good assumption for primordial phase is 1 */
integer popindex = 0; /*index of new population distribution array*/

BEGIN
Generate a random permutation of the popsize members and store in permutation array;
WHILE popindex < popsize DO

Pick a population member (= candl) at random (without replacement) from permutation array;
i= 0;
candidate-found = false;
WHILE i < shuffle-number and NOT candidate-found DO

Pick next population member (= cand2) from permutation list;
threshold = ceiling((effective length candl)*(effective length cand2)/stringJength);
IF candl has at least threshold loci in common with cand2 THEN

candidate-found = true;
IF fitness of candl > fitness of cand2

Distribution[popindex] = cand1;
ELSE IF fitness of candi < fitness of cand2

Distribution[popindex] = cand2;
ELSE IF effective-length candl < effective-length cand2

Distribution[popindex] = candl; /*Fitness equal, select shorter string */
ELSE

Distribution[popindex] = cand2;
END IF

ELSE
i= i +;

END WHILE
IF NOT candidate-found THEN /*No second candidate found*/

Distribution[popindex] = candl;
END IF

popindex = popindex + 1;
END WHILE

END Conduct-Tournament-Selection;

100

5.5.5 Juztapositional Phase Algorithm. In the juxtapositional phase, the operators cut and

splice are applied to the enriched population to construct solutions to the problem. Tournament

selection is still used to give additional population slots to more promising solutions. The following

algorithm embodies the operations involve in the juxtapositional phase:

Procedure ConductJuxtapositionalPhase(in : population; out : solution);
integer current-generation = 0;

BEGIN
WHILE current-generation < max-generations

Cut-andPasteStrings(in out : population; out : best-in-generation);
IF best-in-generation is better than solution THEN

solution = best-in-generation
END IF
current-generation = current-generation + 1;

END WHILE;
END ConductJ uxtaposition alPhase;

5.5.5.1 Cut and Splice Algorithm The operators cut and splice are to the messy ge-

netic algorithm what the crossover operator is to the standard genetic algorithm-they form new

solutions. The goal is to create increasingly optimal solutions by successively combining the en-

riched building blocks from the primordial phase. Like crossover, they are binary operators, offering

the prospect of creating new strings from two strings chosen as mates. Cut and splice were de-

veloped to allow strings of unequal length to be mated (36:503-504) (something that the standard

crossover operator does not account for).

The first step in cut and splice involves the random selection of two mates from the population.

Each string (mate) is then cut (partitioned into two substrings) with probability Pc at a random

location. The cut probability is is directly proportional to the length A of the string (36:503):

Pc = P(dA - 1)

where p, is the constant "bitwise cut probability."

101

After the cut operation has completed, four possibilities exist: both strings were cut, the first

string only was cut, the second string only was cut, or neither string was cut Figure 45, adapted

from Goldberg's discussion of cut and slice coordination (36:503), shows a original pair of strings

and the four possible sets of substrings.

The cut strings are then paired up and spliced (concatenated) with probability p'. For the

case in which both strings were cut, Goldberg specified the pairings shown below the original pair

in Figure 45 (36:503). Notice Goldberg does not consider all possibilities, for instance, pairing

substring 1 to 3 or reversing substrings 1 and 2. He does not justify why he only considers a subset

of the splicing probabilities. One possible reason is splicing in the order shown is quite algorithmic.

If the first splice does not occur, the string at the head is added to the new population, and the next

possibility is considered. If the first splice occurs, the resulting string is added to the population,

and the next possibility is skipped. This process continues until no more pairings exist. Notice

the symmetry as well. The substring that is at the tail of one pairing is the head at the following

pairing. Goldberg does not specify the pairings for the 3 cases in which both strings are not cut,

but the same pattern used in the first may be applied. The resulting pairings are shown shown in

Figure 45.

The following algorithm was developed to implement cut and splice in the manner described

above:

Cut-andPasteStrings(in : population; out: new-population);
integer popindex = 0;
int total-strings 0;
boolean first-cut = false;
boolean second-cut = false;
population -member cut-array[4];
integer cut-index = 0;
BEGIN

WHILE popindex < (popsize - 1) DO /*indexing starts at 0 */
Randomly select two population members from the population, and

designate them as matel and mate2;
Cut mate 1 with probability Pc = p,(Al - 1);
IF cut occurred THEN

first-cut = true;
Store head of matel in cut-array[0];

102

1 2

Cut

--------- L.ocation

Original Pair

I 4

2 4 3

Cut l m m

4

Only 21 42First
Cut4

1 2 1 2 4

Only 3 4 3

Second-

Cut

Neither - -
Original Pair

Cut

Figure 45. Cut and Splice Operations

103

Store tail of matel in cut-array[3];
ELSE

Store ma%.el in cut-array]]
Cut mate 2 with probability pc = p,.02 - 1);
IF cut occurred THEN

second-cut = true;
Store tail of mate2 in cut-array[l];
Store head of mate2 in cut-array[21;

ELSE /*second string not cut */
Store mate2 in cut-arrayl];
IF first-cut THEN

MOVE tail of matel from cut-array[3] to cut-array[2];
END IF;

END IF;
IF first-cut and second-cut THEN

total-strings = 4;
ELSE IF NOT (first-cut and second-cut) THEN

total-strings = 2;
ELSE

total-strings = 3;
END IF;
first-cut = false; /* Reset for next time */
second-cut = false;
WHILE cut-index < total-strings DO

IF cut-index = total-string - 1 THEN /*Only 1 string left */
Put cut-array[cut-ndex] in new-population[popindex];
popindex = popindex + 1;
cut-index = cut-index + 1;

ELSE
Concatenate (splice) cut-array[cut-index] and cut-array[cuLindex + 1] with probability Ps;

IF splice occurred THEN
Put concatenated string in new-population[popindex];
popindex popindex + 1;
cutindex = cutindex + 2; /*Skip to next pair*/

ELSE /* Put head in new pop. and try to pair tail */
Put cut-array[cut-index] in new-population[popindex];
popindex = popindex + 1;
cut-index = cut-index + 1;

END IF;
END IF;

END WHILE;
END WHILE;

END Cut-andPasteStrings;

5.5.5.2 Conduct Tournament Selection. At an abstract level, the tournament selection

algorithm for the primordial phase is identical to the selection algorithm presented in Section 5.5.4.1.

104

Due to the conversion of the string data structure, the algorithm had to be slightly modified (see

next section).

5.6 Coding the Messy Genetic Algorithm.

The data structures and algorithms were designed in sufficient detail to allow the coding

phase to be largely a syntactic map from the design to C code. There were exceptions, though.

The abstract list structures ised in the algorithms had to be replaced with the data structures

specified in Section 5.4-arrays. Fortunately, an array notation was used to represent the abstract

list in the algorithms, so mapping the list to a C array was quite natural. A few details other

were deferred to the coding phase as well. The user interface is more elaborate than the algorithm

indicates. To make the program more user friendly, an input form was developed for reading the

genetic algorithm parameters from a file. Additionally, converting bhe strings from the primordial

data structures to the juxtapositional data structure was not addressed until the coding phase

since this operation is quite language-specific. A separate procedure called at the start of the

juxtapositional phase was developed to handle the data structure conversion. Finally, a few low level

procedures not documented in Section 5.5 were developed to support the higher level procedures.

The structure chart in Figure 46 shows all the procedures in the messy genetic algorithm and their

calling dependencies. An unfortunate ramification of converting the string data structure between

the primordial and juxtapositional phases is that different versions of several procedures had to be

created. The only difference between a procedures "Name" and "NameJ" in the structure chart is

the string data structure on which they operate.

5.7 Test Strategy.

A program is often specified in terms of the allowable starting conditions (precondition) and

the desired final conditions (postconditions) (22:8). A proof of program correctness (verification)

would involve demonstrating that given the precondition the program guarantees the postcondition

105

Messy Genetic
Algorithm

Generate Create Create Condc Convert Cut ConductCompetitive Building nitia 1or1me Data and Torae
Inia Tl

e
= e Tournamen r

- -

Template Blocks Poulation Selection Structure Splice Selection.)

s tric comb plength compatible plngthJ IcompatibleJ

Figure 46. Structure Chart for Messy Genetic Algorithm

106

results. A validation of the program would involve various tests or experiments using (usually) a

subset of all possible preconditions and confirming the program returns a solution meeting the

postcondition.

The nature of a messy genetic algorithm makes either a verification or validation in the sense

described above almost useless. Like a standard genetic algorithm, a messy genetic algorithm lacks

a convergence theorem. So given a set of input parameters (the precondition), nothing specific can

be said as to the output (postcondition) expected from a correct messy genetic algorithm. The

postcondition might specify the solution is best solution uncovered in the source of the search, but

any number of search algorithms meet this criteria. Such a vague (weak) postcondition leads to a

vague sense of correctness.

As a result, the best strategy in showing a correct ; ,entation seems to be to compare the

results of the messy genetic algorithm w ' .hie published results of Goldberg, Korb, and Deb. A

similarity in solutions (postconditons) at least can give some confidence that the genetic algorithm

is implemented correctly. However, it should be recognized that difficult algorithms may return

identical solutions for some inputs, but differing solutions on another set of inputs. So such a

relative validation should be "taken with a grain of salt."

The situation is not as satisfactory with several of the operations which comprise the messy

genetic algorithm. For instance, creating the initial population is a very well defined operation.

The inputs are the genic alphabet, the building block length, and the string length (preconditions),

and the output, must be all possible combinations of the building blocks. In this case a validation

could involve comparing th, combinations generated by the program with a set of combinations

generated manually. All components are quite amenable to a similar validation strategy.

107

5.8 Choice of Problem.

The first application messy genetic algorithms was against a deceptive problem developed from

earlier work on GA-hard functions (32) (33). To validate the messy genetic algorithm developed in

this research it was decided to to apply it to the same deceptive problem, and compare results. A

description -f the problem follows.

The problem is composed of ten 3-bit subfunctions, coded as a alleles on string of length 30

(36:511). Each 3-bit function is evaluated according to Figure 47, then added to obtain the overall

fitness.

Alleles Fitness Alleles Fitness
000 28 100 14
001 26 101 0
010 22 110 0
011 0 111 30

Figure 47. Fitness Value for the 3-bit Subfunctions

Graphs of the subfunction in Hamming space (Figure 48 (36:510)) and as a function of the

bit pattern (Figure 49 (36:510)) reveal its deceptive nature. The bit pattern 111 has the highest

fitness, but all the other bit patterns are coded so as to penalize a subfunction having l's in its bit

pattern. The effect of this is the isolation of the bit pattern 111, and a fitness gradient towards

the second best solution 000. Combining ten subfunctions into one problem makes for a difficult

functional optimization inappropriate for a gradient search technique (36:511). The optimal result

for such a problem is a string of 30 l's.

Experiments with a simple genetic algorithm showed that the effectiveness of the search

dependent on the location of the bits of the subfunction on a string. The simple genetic algorithm

was able to find the optimal result when the bits of the subfunction were adjacent to one another

(a tight ordering), but failed to find the optimal for a random ordering and a loose ordering. The

messy genetic algorithm found the optimal for all three orderings (36:511-511).

108

(0) (30)
110_________________ 11

((01
010 011

000 001
(28) (26)

100 101
(14) (0)

Figure 48. Hamming Graph of Deceptive Subfunction

(36:5 10)

109

30

25

20

f(X)

15-

10 -'

5

0 I I
000 001 010 011 100 101 110 111

Bit Pattern, X

Figure 49. Fitness Gradient Leads Away from Optimal

(36:510)

110

Since a loose ordering provides the toughest test (36:513), a loose ordering is used to validate

the messy genetic algorithm developed in this research. An examination of the loose ordering used

by Goldberg, Deb, and Korb (36:511) showed one of the subfunctions is not as loose as possible.

The ordering they show is 1 4 7 ... 2 5 8 ... 3 6 9 ... 24 27 30. Elaborating the details

implied by the ellipses gives the following complete set of orderings:

147 11 14 17 23 26 29

258 12 15 18 24 27 30

3 6 9 19 2021

10 13 16 22 2528

One of the orderings, 19 20 21, is tightly ordered. To maximize the difficulty of the problem, it was

decided to use the following set of orderings, all of which are loose:

1 611 5 10 15 192429

27 12 1621 26 202530

3 8 13 17 2227

4 9 14 18 2328

5.9 Summary.

This Chapter documented the design process of a sequential messy genetic algorithm. The

design documentation began with a problem description in Section 5.1, and continued in with

increasing level of details through the other design steps. Section 5.2 specified the operations

and high-level data structures needed to meet the requirements of a messy genetic algorithm. In

Section 5.3 documented the low level design, in which specific data structures were chosen after

comparing their efficiency and effectiveness with other data structures. The algorithms and their

development were discussed in Section 5.4. A GA-hard problem that had been previously solved

by a messy genetic algorithm was used to validate the messy genetic code resulting from the design

111

presented in this chapter. This problem and the messy genetic algorithm's performance against it

were discussed in Section 5.5.

Despite the fact that the Genetic Algorithm Toolkit is being developed for an iPSC/2 Hyper-

cube, the development of the sequential code was not a wasted effort. First, when the sequential

messy genetic algorithm performed similarly to the messy genetic algorithm reported in the litera-

ture, confidence was gained that it salient features had been understood and captured in the design.

Additionally, most of the data structures did not change or changed very little in implementing the

messy genetic algorithm on a coarse-grained parallel computer.

112

VI. Parallelization of the Messy Genetic Algorithm.

6.1 Introduction.

This chapter documents the steps taken in parallelizing the messy genetic algorithm. Sec-

tion 6.2 examines the sequential bottleneck in the messy genetic algorithm. Ideally, the bottleneck

would be one ofthe first areas addressed by the parallel design. Since an operation may be in-

herently parallel and not a good application for a parallel computer, Section 6.3 addresses the

feasibility of parallelizing the various parts of the messy genetic algorithm. The anaiysis yields a

parallel decomposition with the potential for a near linear speedup of the sequential bottleneck.

Encouraged by the prospect of a substantial decrease in run time, a parallel messy genetic algo-

rithm was implemented. The mapping to the nodes of a Hypercube is discussed in Section 6.4.

The implementation results are presented in the next chapter.

6.2 Sequential Bottleneck.

Figure 50 shows the run times for various phases of the messy genetic algorithm on 1 node

of the iPSC/2 Hypercube computer. The times are averaged over three separate runs of the messy

genetic algorithm, each using a different random seed. The optimal solution was found in each of

the runs. For further details on the experiment, consult Chapter VII.

Time (sec) Percentage
Generate Competitive Template 0.014 0.0049
Create Building Blocks 0.001 0.0003
Initialize Population 16.708 5.840
Primordial Phase 250.699 87.634
Convert Data Structure 0.635 0.222
Juxtapositional Phase 17.903 6.258
Other 0.116 0.0405
Total 286.076 1.000

Figure 50. Timer Data for Various Parts of the mGA - I Node

113

With the phases decomposed in this manner, the primordial phase definitely seems to be the

bottleneck. Attacking bottlenecks is a key way of reducing the run time of a program. Since the

primordial phase so dominates the messy genetic algorithm, a significant reduction in the run time

of the primordial phase can result in a significant overall reduction in the run time. Use of the

Hypercube may not provide the answer. Not all time-intensive applications are good choices for

parallel computers. If it turns out the primordial phase is inherently sequential, parallelization of

the messy genetic algorithm would offer little chance of improvement. Fortunately, the analysis of

the primordial phase in the next section uncovers a high degree of parallelizability, so parallelizing

the entire algorithm is worthwhile. While the other phase consumed much less of the overall run

time, the feasibility of parallelizing these phases are examined as well. The results are presented in

the next section.

6.3 Determining Effective Parallel Decompositions.

This section examines the feasibility of parallelizing the phases of a messy genetic algorithm.

Since a Hypercube is the target machine, a coarse-grain perspective is used. Not only is likely

speedup discussed, but also whether the sequential and parallel versions are functionally equivalent

or not.

6.3.1 Generation of the Competitive Template. In the sequential version, a random solution

is generated and a greedy algorithm traverses the string nsteeps times, trying different allele values

at each locus position. A data decomposition, with each node computing a portion of the template

does not seem to be feasible. Since the problems applied to a messy genetic algorithm are non-linear,

the portions could not be computed independently. That is, optimizing portions of a non-linear

problem does not guarantee the solution as a whole is good. Additionally, little time savings

could be expected in parallelizing the generation of the solution. In the sequential runs, template

generation is certainly not the bottleneck. Another approach is to instead try to achieve better

114

quality solutions instead of lower run times. To achieve this, one could place an identical greedy

algorithm on each node of the Hypercube and traverse the solution n,,eep,/p, p being the number

of nodes on the Hypercube. The nodal results could then be compared (on an executive level

or using gdhigh) to determine the best template. Determining the best solution would require a

relatively costly communication step resulting in a longer run time than the sequential version. As

the sequential version already was returning fairly high quality solutions, it was decided to forgo

parallelizing the generation of the competitive template.

6.3.2 Enumerative Initialization and Evaluation. Parallelization of this phase of the genetic

algorithm certainly should be considered desirable. Creation of the initial population involves

the generation of all combinations of loci taken r at a time, r being the building block length

(suspected nonlinearity) of the problem. If there are n loci in a fully specified problem, there are
nt

' 7"n-',., combinations, typically quite a large number. Additionally, each combination requires an

evaluation, a fairly expensive operation.

6.3.2.1 Rejected Parallel Decomposition. Notice the example problem can be decom-

posed into 3 smaller problems:

0 * Put 1 at the head of all combinations of 2,3,4,5 taken 2 at a time.

0 ** Put 2 at the head of all combinations of 3,4,5 taken 2 at a time.

0 *** Put 3 at the head of all combinations of 4,5 taken 2 at a time.

Using the iterative algorithm above, the three sub-problems are independent of each other, they

could be solved in parallel. For example, one of the subproblems could be assign to nodes 0, 1,

and 2.

In Section 5.5, it is shown that the generation of combinations of building blocks could

be achieved with a series of smaller combinations. This is exactly what is happening with this

115

*1-2-3 (Start) Combination 1

1-2-4 (Step 2)

1-2-4 (Step 1) Combination 2

1-2-5 (Step 2)

1-2-5 (Step 1) Combination 3

1-3-5 (Step 4)

1-3-4 (Step 5)

1-3-4 (Step 1) Combination 4

1-3-5 (Step 2)
Node 0

1 3-5 (Step 1) Combination 5

1-4-5 (Step 4)

1-4-5 (Step 5)

1-4-5 (Step 1) Combination 6

** 2-4-5 (Step 4)

2-3-5 (Step 5)

2-3-4 (Step 5)

2-3-4 (Step 1) Combination 7

2-3-5 (Step 2) Node 1

2-3-5 (Step 1) Combination 8

2-4-5 (Step 4)

2-4-5 (Step 5)

2-4-5 (Step 1) Combination 9

***3-4-5 (Step 4)

3-4-5 (Step 5)

3-4-5 (Step 1) Combination 10 Node 2

3-4-5 (Step 3) Terminate

Figure 51. A Considered Parallel Decomposition

116

decomposition-each node is assigned a subproblem. An immediate concern with this decomposi-

tion is that of load-balance. This concern arises by noting that for a fixed r,

Figure 51 shows quite a large load imbalance for the small sample problem. A balancing scheme was

developed that offered the potential for fairly good load balance for longer strings. Figure 6.3.2.1

show an example of this scheme for a problem of length 30 and a building block size of 3. On the first

pass, the sub-problems are distributed to the nodes in ascending order of magnitude. Thereafter,

the reverse is done. That is, to ",ffset the initial load imbalance, the remaining sub-problems are

distributed to nodes in - i.lng order of magnitude. The example shows a 6.4 per cent difference

(imbalance) betweett '.,e node with the most combinations and the node with the node with the

least combin ,ions. While this is a fairly good load balance, this scheme was rejected when another

scheme ,rfering a near-perfect load balance was discovered. This scheme is presented next.

6.3.2.2 Load-Balanced Parallel Decomposition. Consider a list of combinations gen-

erated by a sequential implementation of the combination algorithm. The equivalent list can be

generated with a near perfect load balance as follows. To begin, each node is given a starting offset

into the list of combinations corresponding to the node number plus 1. For example, node 0 is

assigned the first combination, node 1 the second combination, and so forth. Thereafter, each node

generates the combination that is a multiple of the total number of nodes plus the starting offset.

On an eight node Hypercube, then, node 0 generates the 1st, 9th, 17th, ... , node 2 generates

the 2nd, 10th, 18th, ... , and so forth. The stars in Figure 52 represent the node on which the

combination is generated for the sample problem. Using this decomposition, the nodes differ by at

most one combination, a near-perfect load balance.

117

Node Q9) + (14) + (6 519

Node &) + (15) + (7) 504

Node (27> + (126> + (8> = 499

2 2 2

Node (26) + (17) + (9) = 497

Node (25) +±(18) +(10) +Q (2 499

Node (24) + (19) + (121) + (3) =49

Node (23)+ (20)+ (122) +Q) =515

Node (2) + (21) + (13) + (5) = 529

118

1-2-3 (Start) Combination 1 *

1-2-4 (Step 2)

1-2-4 (Step 1) Combination 2 **

1-2-5 (Step 2)

1-2-5 (Step 1) Combination 3 *

1-3-5 (Step 4)

1-3-4 (Step 5)

1-3-4 (Step 1) Combination 4 *

1-3-5 (Step 2)

1-3-5 (Step 1) Combination 5 **

1-4-5 (Step 4)

1-4-5 (Step 5)

1-4-5 (Step 1) Combination 6 *

2-4-5 (Step 4)

2-3-5 (Step 5)

2-3-4 (Step 5)

2-3-4 (Step 1) Combination 7 *

2-3-5 (Step 2)

2-3-5 (Step 1) Combination 8 **

2-4-5 (Step 4)

2-4-5 (Step 5)

2-4-5 (Step 1) Combination 9 *

3-4-5 (Step 4)

3-4-5 (Step 5)

3-4-5 (Step 1) Combination 10 *

3-4-5 (Step 3) Terminate

Figure 52. Load-Balanced Parallel Decomposition

119

6.3.2.3 Benefits of the Parallel Decomposition. In addition to a speedup, a parallel

decomposition allows the initialization of much larger problems than possible with the sequential

version run on 1 node. The initial population consumes a large amount of memory. In a experi-

ment to measure heap space, each node was found to have about 10 Mb in heap space, allowing

the initialization of approximately 410,000 members of a population. Distributing the initialization

among the 8 nodes of the iPSC/2 Hypercube allows the initialization of 3.2 million member popu-

lation. A final positive comment is the parallel version of enumerative initialization is functionally

equivalent to the sequential version.

6.3.3 Primordial Phase. It seems virtually impossible to parallelize the primordial phase

and maintain function equivalence in the primordial phase. In the sequential version, a tournament

could be held between any two members of the population. With a distributed population, to allow

such global tournaments would require numerous communications of fitness information. Such

overhead would likely offset any time gains.

To allow this phase to operate in parallel, a decomposition akin to the one used by Pettey

(63) for simple genetic algorithms is used. Tournaments are held on a strictly local basis for a

number of generations specified by the user. Doing so results in a better than linear speedup in the

primordial phase (see next Chapter), yet the possibility exists for locally optimal building blocks.

This possibility is dealt with at the start of the juxtapositional phase.

6.3.4 Juztapositional Phase. In order to construct good solutions to the problem, the best

building blocks are needed. Leaving the nodal populations separate in the juxtapositional phase

generally left each node lacking one or more of the best building blocks. Poorer solutions than

those returned by the sequential algorithm resulted.

To overcome this problem, something quite "drastic" is done. At the start of the juxtaposi-

tional phase, the local populations are combined on each of the nodes. To further enrich the popu-

120

lation and reduce the number locally optimal, but globally inferior, building blocks, the combined

population can undergo additional tournaments prior to the conduct of the normal juxtapositional

phase'. It is important to note that combining the population like this does not result in identical

and redundant searches. While the populations on each node taken as a set are identical, the order

of the population members on each node is different. So the selection of mates for cut and splice

(and hence the resulting strings) differ.

In reality, this scheme is not as "drastic" as it might seem. The resulting population size is

the same as a sequential messy genetic algorithm has at the start of the juxtapositional phase. So

there is virtually no difference in run time in the juxtapositional phase. True, when using a parallel

computer, one normally hopes for a speedup. But there does not seem to be an alternative, in

general. Sharing of the best building blocks could not be used, because of differences in subfunction

scaling. Once the nodal populations reach a certain value, the building blocks could be combined

on a single node for further tournaments and reductions.

One possibility not explored is assigning each node different cut and splice probabilities,

allowing a broader search than a sequential mGA using one set of cut and splice probabilities.

While not leading to a speedup of the juxtapositional phase, such a scheme would guarantee

solutions at least as good (and quite likely better) than a single processor mGA.

6.4 Mapping to the Hypercube.

A mapping specifies the way the data and algorithms derived from the decomposition are

distributed among the processors of the parallel computer (67:23,26-29). The goals of a mapping

are a good load balance and scalability (67:26-27). The mapping discussed below seems to guarantee

a good load balance, but due to an expected dependence of genetic algorithm performance on the

'Additional tournaments were . needed to solve the target problem to optimality

121

number of nodes used, it is impossible to make assertions as to scalability. The reason for this is

discussed shortly.

All parallel decompositions discussed in the last section are data decompositions. Each no-je

on the iPSC/2 can be assigned the same set of algorithms. The data, in this case the strings, is

evenly divided among the nodes of the Hypercube. Assuming each node is assigned the same cut

and splice probability, run times can be expected to be virtually equal. Even if the probabilities

differ, the resulting differences in run time are very likely to be small relative to the overall run

time. (Cut and splice probabilities only play are part in the cut and splice operation; all other

operations are independent of these probabilities). As a result, an excellent load balance can be

expected.

It might seem that such a mapping is scalable. In a sense, this is true. Up until the number

of processors exceeds the number of strings, the same mapping may be used. So there is a certain

independence from the dimensionality of the Hypercube. However, recall that tournament selection

is conducted on a local basis. As the number of nodes increases, tournament selection becomes

increasing localized. Since in a sequential messy genetic algorithm, tournament selection is on a

global basis, as the cube size increases, the parallel implementation diverges more and more from

its s. quential counterpart. The difference in tournament selection can result in different solutions.

So the mapping cannot be said to be truly s alable. Testing may give some indication as to the

effect of increased localization.

6.5 Summary.

This chapter began with an identification of the sequential bottlenecks of the messy genetic

algorithm (Section 6.2). Section 6.3 showed that the parallelization of the messy genetic algorithm is

feasible by developing a decomposition that has the potential for a substantial speedup. Section 6.4

122

discussed the mapping of the decomposed problem to the nodes of the coarse-grained computer.

The next chapter discusses the results of the parallel implementation.

123

VII. Messy Genetic Algorithm - Implementation Results.

7.1 Introduction.

This chapter presents the implementation results of the sequential (Section 7.3) and parallel

(Section 7.4.2.2) versions of the messy genetic algorithm. To allow a meaningful comparison, the

parameter settings were set equal to the parameter settings used by Goldberg, Korb, and Deb in

solving this problem.

7.2 Parameter Settings

The parameter settings used throughout the experiment are shown in Figure 53.

String Length 30
Block Size 3
Genic Alphabet 01
Reduction Rate 0.500000
Reduction Interval 3
Total Reductions 4
Shuffle Number 30
Cut Factor 0.016667
Splice Probability 1.000000
Maximum Generations 5

Figure 53. Messy Genetic Algorithm Parameter Settings

7.3 Sequential Implementation.

The sequential messy genetic algorithm was implemented then tested in accordance with

the test strategy outlined in Chapter 5. The global optimal was found to a non-linear GA-hard

problem very similar to used in the initial study on messy genetic algorithms (36:509-515). The

same function was applied to the simple genetic algorithm. As expected, suboptimal results were

returned. In what follows, the results obtained from parallelizing the messy genetic algorithm are

presented.

124

7.4 Parallel Implementation.

7.4.1 Execution Times and Speedup. A fair amount of speedup was achieved by parallelizing

the messy genetic algorithm. Figures 54 - 56 show the average run times for various phases of the

messy genetic algorithms for 2 nodes, 4 nodes, and 8 nodes, respectively. The overall execution times

decrease rather substantially as nodes are added. As expected, the initialization of the population

showed a linear speedup. The results for the primordial phase were slightly surprising. In 2-node

and 8-node configuration, slightly superlinear speedups were observed (Figures 59 and 60). Since

the initial population was distributed equally among the nodes and everything else remained the

same, a linear speedup was all that was hoped for. The reason for a superlinear was that while

the shuffle number remained the same, a string did not, on average, have to search as long to

find a compatible mate. Since the the construction of the building blocks and the juxtapositional

phase were not parallelized, a fixed sequential time remains that is unaffected by the addition of

processors. Extrapolation of the graph in Figure 57 would give a non-zero intercept. This fixed

sequential component represents the lower bound of the run time. As Figure 58 indicates, adding

processors quickly becomes a case of diminishing returns as the fixed sequential component begins

to dominate.

7.4.2 Solution Quality.

7.4-2.1 Messy Genetic Algorithm. The parallel messy genetic algorithm consistently

found the global optimal solution. Three different random number seeds were used in runs on

a 2-node, 4-node, and 8-node cube. With the exception of one of the runs on the 2-node cube,

every run returned the global optimal. It was very encouraging that every run on the 8-node cube

returned the optimal solution, since this configuration had the minimum run time as well.

7.4.2.2 Simple Genetic Algorithm. The parallel simple genetic algorithm did not find

the optimal solution for the non-linear problem. The best solution obtained was 296, and it was

125

found in generation 10 (out of 200 generations). The simple genetic algorithm typically found

its best solution in an early generation, implying the solution was found more by chance than

by directed evolution. The population tended to converge to a solution of 280 (a locally optimal

solution) as the genetic algorithm proceeded, indicating the simple genetic algorithm was "deceived"

by the non-linear function. Unless the simple genetic algorithm generates the optimum during

random generation of the initial population or an early generation, it appears very unlikely the

simple genetic algorithm can find the global optimum.

Time (sec) Percentage
Generate Competitive Template 0.013 0.0086
Create Building Blocks 0.002 0.0013
Initialize Population 8.446 5.563
Primordial Phase 123.531 81.37
Convert Data Structure 2.226 1.466
Juxtapositional Phase 17.093 11.259
Other 0.171 0.113
Total 151.814 1.000

Figure 54. Time Data for Various Parts of the mGA - 2 Nodes

Time (sec) Percentage
Generate Competitive Template 0.014 0.0161
Create Building Blocks 0.001 0.0011
Initialize Population 4.317 4.955
Primordial Phase 62.110 71.284
Convert Data Structure 2.815 3.231
Juxtapositional Phase 17.523 20.111
Other 0.303 0.348
Total 87.130 1.000

Figure 55. Time Data for Various Parts of the mGA - 4 Nodes

7.4.3 Comparison with Literature Results. In terms of solution quality, there was excellent

agreement between the messy genetic algorithm created for this thesis effort and the messy genetic

algorithm created by Deb, Goldberg, and Korb. Specifically, both returned optimal solutions for a

"classical" GA-hard problem.

126

Time (sec) Percentage
Generate Competitive Template 0.013 0.0245
Create Building Blocks 0.001 0.0019
Initialize Population 2.262 4.255
Primordial Phase 30.503 57.374
Convert Data Structure 1.877 3.531
Juxtapositional Phase 17.783 32.320
Other 0.712 1.339
Total 53.165 1.000

Figure 56. Time Data for Various Parts of the mGA - 8 Nodes

250
200

Time
200

T 150
(secs)

100

50

0 0.125 0.25 0.5
i

p

Figure 57. Overall Run Time versus Inverted Number of Nodes

127

Speedup 1

0.8

0.6

2 4 8
Number of Nodes, p

Figure 58. Speedup versus Number of Nodes

250

Time200

T 150 -

(secs) 100

10/

0.125 0.25 0.5

P

Figure 59. Primordial Phase Run Time versus Inverted Number of Nodes

128

Speedup

0.95

0
2 4 8

Number of Nodes, p

Figure 60. Primordial Phase Speedup versus Number of Nodes

Yet there were two fairly significant differences. The first difference was in the reduction

interval required to give optimal solutions. For the non-linear test problem, the originators of

the messy genetic algorithm report they were able to obtain the optimal solution even when they

reduced the primordial population as often as every other generation. Reducing the population so

often is certainly desirable since run time of the primordial phase is directly proportional to the

population size. Yet when the same reduction interval was tried, the optimal result was rarely

obtained. To consistently obtain the optimal result, the reduction interval had to be increased to

three generations. The time lost by the greater reduction interval was offset in the juxtapositional

phase, where the second major difference was noticed. The originators report 15 juxtapositional

generations as the requirement for the optimal solution. In the implementation used in this thesis

research, the optimal was found often in 4 generations and consistently in 5 generations.

The exact reason for these differences has yet to be determined. The results observed in

AFIT's messy genetic algorithm do seem consistent with the implementation. Recall that tour-

nament selection produces at most two copies of a solution in the new generation. Reduction is

129

performed by simply considering (by random selection) only half the population for a tournament.

With only two solutions in the first generation, the best building block stands an excellent chance

of not being selected for a tournament when reduction occurs in the second generation. With an

increase in reduction interval, the best building blocks are in much higher concentration when a

reduction actually occurs. Thus, elimination of the best building blocks is much less likely. The

developers of the messy genetic information may have taken advantage of a priori knowledge of

good building blocks to ensure these blocks were not eliminated when the population reduced, but

this did not appear in their article.

The second di.Terence is even more puzzling. The developers claim that 15 generations is the

minimum requirement for a fully specified string of length 30 to be created from building blocks of

length 3. Given that in the first generation two strings of length 3 could form 1 string of length 6

(no cut and a splice), then in the second generation two strings of length 6 could be spliced together

to create a string of length 12, and so forth, it seems possible that a fully specified string could

be created in 4 generations. If fact, a string could be as long as 48 (= 3 * 2'). This hypothesis

was confirmed by experimentation. The competitive template was set equal to 30 zeros and the

maximum juxtapositional generations set equal to 4. An optimal solution consisting of 30 l's was

returned, indicating the solution was constructed completely by cut and splice. Generalizing the

calculation above and rearranging, gives the following equation for the minimum juxtapositional

generations required for a fully specified solution of length I and building block size b:

genrful = [Iog2(1/b)]

Unless a user has heuristic information that allows the messy genetic algorithm to be terminated

early, it is highly recommended that the maximum generations of the juxtapositional phase be set

to at least genflut. If this is done, it is possible for a string to form solely from building blocks, not

simply part building block, part competitive template.

130

Such basic differences in the operation of the messy genetic algorithms point to different

interpretations of the specifications. Additionally, there were several details not provided in the

descriptions of the messy genetic algorithm (36) (37) (38). A case in point is the method for

reducing the population mentioned previously. A dialogue with the developers has yet to resolve

such discrepancies.

131

VIII. Conclusions.

The empirical and parametric nature of genetic algorithms makes it very difficult to generalize.

All conclusions should really be qualified with "using these parameter settings", "against this

problem", "with this communication strategy", and so forth. Any extrapolation, generalization, or

induction based on the results observed in the experiments could lead to wrong conclusions. There

is no basis to allow statements such as "increasing population size reduces premature convergence"

or "messy genetic algorithms outperform simple genetic algorithms when applied to non-linear

problems." The theory of genetic algorithms is not yet developed enough to allow such broad

conclusions to be made. At best, the conclusions drawn from this research should only be used as

guidelines, not as truisms.

8.1 Research Questions Conclusions.

1. Research Question #1 Conclusions. The standard Hypercube implementation of a genetic

algorithm which shares solutions and uses local selection and mating is fundamentally differ-

ent than a sequential genetic algorithm. The theoretical development of genetic algorithms

assumes global selection and no restrictions on crossover, and nothing akin to sharing so-

lutions. These differences do no necessarily mean that such Hypercube implementation is

a poor search technique. In fact, the strategy using local selection and communication of

solutions finds the optimal solution to the Rosenbrock's saddle on all 40 runs at a population

size of 3200. For smaller population sizes, however, the algorithms (GN or PN) using global

selection without sharing seemed more successful.

2. Research Question #2 Conclusions. Recall that the standard Hypercube implementation

returns lower quality solutions than the sequential genetic algorithm when applied to Rosen-

brock's saddle (73:156-158). Modifying the Hypercube genetic algorithm to implement global

selection without sharing results in an algorithm that agrees better with Holland's theory.

132

Testing against Rosenbrock's saddle indicates the use of global selection can reduce the ten-

dency toward premature convergence. As a result, for the majority of the population sizes

examined, a global selection strategy outperforms the local selection strategy in terms of so-

lution quality. So, in the range of populations sizes used in this study, the global selection

strategy is more robust.

3. Research Question #3 Conclusions. In larger populations, sharing of the best solutions im-

proves the likelihood of finding the global optimal. The communication of solutions amongst

the nodes of a Hypercube seems to result in a synergism lacking in sequential genetic al-

gorithms or parallel genetic algorithms that do not share solutions. However, with smaller

populations, sharing of the best solutions seems to increase the tendency towards premature

convergence. The population size where sharing changes from a liability to a benefit is very

likely problem- ar.d parameter-specific.

4. Research Question #4 Conclusions. In terms of solution quality, the results from the messy

genetic algorithm developed during this research effort are in excellent agreement with the

results of Deb, Goldberg, and Korb. In both cases, the messy genetic algorithm arrives at

the optimal solution to a non-linear problem that a simple genetic algorithm cannot solve

to optimality. From a more "white box" perspective, there seem to be differences. The

AFIT messy genetic algorithm requires a longer reduction interval but fewer juxtapositional

generations than the literature results. Differences in semantics might be the source of these

differences. More important than these minor differences is the independent confirmation

that messy genetic algorithms can solve GA-hard problems.

5. Research Question #5 Conclusions. Based on experimental results, it seems feasible to par-

allelize the messy genetic algorithm and still obtain the global optimal solution. A slightly

better than linear speedup was obtained on the "bottleneck" of the genetic algorithm, the

primordial phase. However, the juxtapositional does not seem amenable to parallelization.

133

Attempts to design the juxtapositional phase to operate in parallel were uns;- essf& ..cause

the construction of the global optimal demands that the best building blocks reside on the

same node. Certainly, since the building blocks in the target problem all had the sa.e the

same scale, a scheme could have been developed where each node sei its buildings blocks with

highest fitness to all the other nodes. In general, however, the subfunctions do not have the

same scale, so with most problems, such a scheme would fail. It seems the only way one can

guarantee each node has all the best building blocks is to combine the post-primordial popu-

lation from all the nodes. However, since by the end of the primordial phase the population

is generally greatly reduced, combining populations is not a very expensive operation.

As the result of the juxtapositional phase and other components, there is a (virtually) constant

sequential component to the execution times. The sequential components becomes increas-

ingly significant as nodes are added to the cube. As a result, speedup decreases. Speedups

range from 0.94 for 2 nodes to 0.66 for 8 nodes. With such diminishing returns, one cannot

say that the implementation is scalable.

8.2 Summary.

This chapter offers conclusions to the research questions posed in Chapter 1. The goal to find

strategies to reduce premature convergence in Rosenbrock's saddle seems to have been met.

While the nature of genetic algorithms makes it hard to generalize, the fact that Rosenbrock's

saddle is a difficult function for a genetic algorithm makes it possible that the strategies will

be effective against many problems. The goal to implement and parallelize a messy genetic

algorithm is a partial success. Results against a "classical" GA-hard generally corroborate

the results of the developers in that the global optimal solution is consistently found. Yet

while the parallel implementation offers the prospects for speedup without loss of optimality,

there are limitations in terms of scalability. However, if the messy genetic algorithm proves

ineffective against real-world problems, the efforts were for naught.

134

IX. Recommendations.

9.1 Introduction.

As little research has been directed towards genetic algorithms at AFIT, there are numerous

possibilities for future genetic algorithm applications and research. Section 9.2 suggests problems

to which genetic algorithms might be applied, while Section 9.3 details possible future areas of

research.

9.2 Problem Recommendations.

9.2.1 Collaboration with Domain Experts. The list of genetic algorithm applications in

Chapter 1 contains includes several application areas of interest to AFIT and the Air Force. As the

tailoring of a genetic algorithm to a problem requires some domain-specific knowledge, a collabo-

ration with the domain experts here at AFIT could be quite helpful in applying genetic algorithms

to these application areas.

9.2.2 Application of Simple Genetic Algorithms to Non-Differentiable Functions. While op-

timal solutions were found to Rosenbrock's saddle, solution times were not impressiv (even if the

genetic algorithn-, had been terminated the moment the optimal solution was found). Other search

techniques seem better suited. Since the function describing Rosenbrock's saddle is differentiable, a

gradient-based technique may i. used to find a solution (57). After tailoring of the gradient "step-

size," a gradient-based search technique could arrive at a near optimal solution in roughly one

second on a 386 personal computer (57). As shown by the performance curves shown Appendix A,

a genetic algorithm takes much longer to obtain near-optimal solutions.

So while Rosenbrock's saddle was a good function on which to try premature convergence

reduction techniques on, one would not generally use a simple genetic algorithm to solve a differ-

entiable function if a gradient-based technique was available. For function eptimization problems,

135

a genetic algorithm should be reserved for functions against which gradient-based techniques have

difficulty. For instance, for functions having no analytical derivative, users of the gradient-based

search strategies resort to Monte Carlo techniques requiring numerous iterations (57). The genetic

algorithm, which does not require a derivative, is effectively immune to difficulties caused by non-

differentiability. As a result, the genetic algorithm would likely be much more competitive in terms

of time against non-differentiable function. One might perform a head-to-head competition pitting

the genetic algorithm against other known optimizing strategies for non-differentiable functions.

An insight gained from this research is that a genetic algorithm will likely have difficultly

competing against a search strategy tailored to a particular problem. Unlike the tailored search

strategies, a genetic algorithm generally does not take advantage of problem-specific information

that might help the search. The overall recommendation is to apply genetic algorithms where

current search strategies perform poorly.

9.2.3 Application of Messy Genetic Algorithms to Real-Word Problems. While the messy

genetic algorithm has had several initial successes, the test functions to which it has been applied

seem to have little practical value (36) (37). The real test of the utility of messy genetic algorithms

will come with their application against real-world problems. The developers believe "messy genetic

algorithms now appear capable of solving many difficult combinatorial optimization problems to

global optimality in polynomial time or better" (37:417) but have yet to demonstrate this. Such

claims should be examined, especially against optimization problems of practical importance.

Application to non-linear problems seems especially appropriate given that messy genetic

algorithms were designed for a class of non-linear problems (GA-hard). Sandgren cites several

engineering design

optimization problems in his doctoral dissertation (70). As these design problems have vary-

ing degrees of non-linearity (70:27,29-31), the messy genetic algorithm might prove effective against

them. A comparison could then be made between the results returned by the messy genetic algo-

136

rithm and the results returned by the suite of search methods used by Sandgren (70:28). The genetic

algorithm system used by Forrest and Mayer-Kress against the same set of problems (25:312-331)

might be included in the "competition" as well. The messy genetic algorithm might also be used

to solve the non-linear equations used in international security models (65:312-333).

9.3 Recommendations for Future Research.

9.3.1 Termination Criteria/Solution Quality Indicator. A weakness in genetic algorithms

is a lack of an adequate termination criteria. As was shown on the performance plots of the messy

genetic algorithm, most runs became asymptotic long before 200 generations is reached. Methods

have been devised to stop the genetic algorithm after the search seems to have converged. For

example, the Genesis genetic program (41) has an option which, if selected, results in termination of

the genetic program after a user-specified number of generations has passed without the generation

of new solution. While termination criteria such as this could save time, the user is still given no

indication as to the quality of the solution. One is left wondering whether the search converged

onto a global optima or to an inferior local optima.

To get an idea of the quality of the solution found, some knowledge of the search space seems

required. If one were to perform, say, a chi-square test for normality, some indication of the solution

quality could be obtained. (Other distributions could be tested for as well). In particular, from

calculations using the number of standard deviations that the fitness of the solution lies from the

sample mean fitness, one could make statements such as, "The likelihood of selection of this solution

from a random population is 0.001 percent." Such a measure would give a user a firmer indication

of solution quality.

Use of standard deviations could provide a termination criteria as well. The user could specify

up front that the search be terminated once a soiution is found that is X standard deviations

from the mean. Since no probability inference is being made, use of standard deviations in this

137

manner could be done whether or not the solution space is normally distributed. Requirements and

suggestions for the design of a chi-square solution quality indicator are contained in the following

paragraphs.

Generation of Sample Distribution. A statistical analysis of a population requires

a sample distribution obtained by random sampling. If the initialization phase of the GA produces

random solutions, the initial population may serve as the random sample. The sample mean

fitness and standard deviation could then be calculated from the population members in the initial

population. If heuristic informaticit is used to create a better-than-average initial population, a

module must be added to the genetic algorithm which takes a random sample (an unbiased estimate

of the population average and variance is needed (12:23), but a heuristically generated population

would be biased towards better-than-average solutions).

Sampling. If there are large number of feasible solutions to the problem, sampling

with replacement can be used. In terms of the implementation of an algorithm, sampling with

replacement means there is no need to check samples against previously generated samples and make

changes if there is duplication. Not checking is justified if there is very little chance of duplication.

For example, in a fully-connected N-city Traveling Salesman Problem, there are (N - 1)!/2 solutions

to the problem (5:1). Thus, for the problem sizes typically encountered in Traveling Salesman

Problems, the chance of duplication of samples is very small. On the other hand, if there are

relatively few solutions, as in a SCP with a relatively sparse matrix, checks for duplication must

be performed (12:18).

The first. question that needs to be answered is the size of the sample that needs to be taken.

For "random sampling on a relatively large" population, a guideline for the sample size n is given

by (58:368-369)

40,2

138

Since the population variance o 2 is not known, it can be estimated from the variance of a previous

random sample from the population (12:26,78).

Once this sample size estimate is obtained, a random sample of that size must be generated.

The variance of this sample should then be compared to the original sample variance in terms of

the estimate of the sample size. If the difference is great enough, a new random sample is generated

based on the new estimate of the sample size (58:624).

Using the data obtained from the sample, a chi-square (X2) goodness-of-fit test should be

performed "to determine whether a set of data could reasonably have originated from some given

probability distribution" (54). This involves constructing a distribution table with intervals se-

lected so that n/1i > 5 for every interval i, where n3i is the frequency expected for the probability

distribution being considered, calculated using the maximum likelihood estimators for the unknown

parameters (54:366). The hypothesis that the data is well described by the distribution function is

accepted at the a level of significance if

(xi - np 2
--1anpi

where xi are the observed frequencies and r is the number of parameters that were estimated

(54:366-369). Say the data is well described by a normal distribution and the best solution is -5.98

standard deviations from the mean. One can then say the probability of randomly generating a

solution better than the best solution is roughly 10 - 9 (9:412), giving at least some idea of the

solution quality.

A chi-square test function was written and incorporated into the simple genetic algorithm.

Unfortunately, Rosenbrock's saddle failed the test for normality. However, the use of a chi-square

quality indicator is recommended for possible application to NP-Complete problems. Encouraging

is the fact that the solution space of at least one NP-Complete problem (the Quadratic Assignment

Problem) "tends to be normally distributed" (9:412).

139

9.3.2 Meta-Level Hypercube Implementation.

9.3.2.1 Background. A genetic algo'ithm has several parameters which must be spec-

ified. Among these are the population size, mutation rate, crossover rate, and selection strategy

(40:124-125). The parameter instantiations define the adaptive strategy of the genetic algorithm.

The performance of a genetic algorithm is a "non-linear function of these control parameters" (40:127).

As genetic algorithms have been found to work well on complex functions, Grefenstette proposes a

meta-level genetic algorithm, the upper level searching for optimal control parameters based on the

performances of the lower level genetic algorithms (which are themselves searching for solutions to

another optimization problem) (40:122-125). See Figure 61 (40:123).

Environmfent E
Performance M'asure

Process

Control FeedbackInput c[f

Adaptive

Strategy

Feedback
U

Parameterx
Strategy I

Tuner

Figure 61. Grefenstette's Meta-Level Genetic Algorithm

What follows is an empirical discussion of Grefenstette's experimental procedure. He param-

eterizes the control value settings, creating 1000 instances of the genetic algorithm (GA). To create

140

an initial population, he evaluates each of the GA's against each of the five De Jong test functions

(19). Randomly selecting 50 of these GA's and encoding them as "chromosomes", he then subjects

them to the meta-level GA. The stepwise nature of the process suggests it is really not dynamic

as Figure 61 seems to imply. Grefenstette does not give many details as to what is involved in

the meta-level step, other than giving the control settings for the meta-level GA. Possibly the 2nd

level GA changes the parameter settings of the 1st level GA's by subjecting them to selection,

crossover, and mutation. After this meta-step completes (presumably after many repetitions), the

20 best GA's are subjected to more extensive testing. The overall best performer is compared to

parameter settings suggested by De Jong in tests against an image registration problem. In terms

online performance (overall average of solutions), a GA using parameter settings determined by

the meta-level genetic algorithm outperform a GA using De Jong's parameters. In terms of ofiline

performance (average of the best solutions), the GA's are statistically identical (40:127-128).

Grefenstette notes the following problems with his meta-level process:

" Good performance can be obtained with a variety of control parameters, anyway.

" The experiments required a great deal of CPU time.

Grefenstette suggests a meta-level GA that would allow the dynamic variation of control

parameters, but questions the feasibility since "for many optimization problems, the number of

evaluations which can be performed in a reasonable amount of time would not allow the GA

enough evaluations to modify its search techniques to any significant degree" (40:128).

Based on the inefficiency associated with the meta-level GA, its implementation seems im-

practical. That is, until one recalls that Grefenstette performed his experiments on a sequential

computer. Since evaluations can be performed in full parallel, use of a Hypercube could alleviate

the time problem Grefenstette mentions. Also, as discussed next, use of a Hypercube would allow

the implementation of a truly dynamic meta-level GA.

141

9.3.2.2 Suggested Meta-Level Genetic Algorithm Hypercube Design. In the current Hy-

percube implementations, such as the one done by Pettey, the nodes of the Hypercube each run

a GA with the same control settings and share best solutions. Another approach might be to

assign different control settings to each node, then share the settings that appear to work to best.

However, this does not allow for variation from the original n sets of control strategies. So a bet-

ter approach might be to have a supervisor running a 2nd level GA that would allow the control

parameters to evolve.

A meta-level GA was implemented on AFIT's iPSC/2 Hypercube, but time limitations pre-

vented further study. A suggested plan-of-attack for future research is as follows:

" Port the current reta-level GA on the iPSC/2 to the iPSC/1 (or another Hypercube with

more nodes). This would allow a population of 32 parameter sets (the 8 nodes of the iPSC/2

might be too small a population).

" Begin by keeping all parameters but mutation rate constant, and study how the mutation rate

evolves. (The current implementation is implemented so as to allow only the mutation rate to

change). Compare the solutions returned by the meta-level GA with solutions returned with

typical static mutation rate settings (usually low but non-zero settings work best (40:127)).

" If results from this the "proof of concept" are encouraging, extend the meta-level GA to the

other GA parameters.

9.4 Sum mar.-

This chapter offers suggestions for future genetic algorithm applications (Section 9.2) and

research (Section 9.3). Several other possibilities exist, ideas for which may be obtained from the

literature (see Bibliography).

142

Appendix A. Parallel Random Number Generation.

A.] Requirements.

While the subject of random number generation for genetic algorithms does not receive much

attention in the literature, the implementation of the stochastic features of genetic algorithms

seems to rely very heavily oi, random number generators (34:62-70) (41). For example, Grefen-

stette's Genesis code uses a a random number generator to initialize the populations, to randomly

select parents for mating (done implicitly by randomly shuffling the population), randomly select-

ing string positions to be mutated, and so forth. In parallel genetic algorithm, random number

generators could be involved in randomly selecting individual(s) to be communicated and in se-

lecting individuals to be replaced by the individuals received by other nodes, in addition to all the

operators mentioned above (63:156) (49:171) (73:178-179).

Since a genetic algorithm is modeling the probabilistic processes involved in evolution, the

fidelity of the model would seem to rely rather heavily on the pseudo-random number generator.

This fact remains true whether the genetic algorithm is implemented on either a sequential or

parallel machine. With this in mind, it seemed incredible that no study could be located that

examines the effect of the the type of random number generator used, especially since many common

methods of random number generation are unsatisfactory because the sequences generated tend to

repeat (52:3,4). The lack of a study may be due to the fact that a genetic algorithm will function

regardless of whether the random number generator is good or not. For example, a genetic algorithm

would still return an answer even if the "random number generator" simply altenated between a

I and a 0 every time it was called.

Stochastic programs are defined not only by the algorithm and the state of the data being

operated on, but also the random number sequence (Figure 62). A stochastic algorithm cannot

operate on the data until it becomes deterministic through the use of a random number (let's

call this process "instantiating" the stochastic algorithm). "Instantiating" a stochastic algorithm

143

Data

Data

Procedures

Procedures

Random Numbers

(a) Probabilistic Algorithm (b) Deterministic Algorithm

Figure 62. Random Numbers are an Integral Part of a Stochastic Algorithm

with different random number sequences creates different deterministic algorithms. Notice that

while the a random number is typically not generated until it is needed, a stochastic function

could pre-generate its random number sequence (provided that no conditional statements make

this impossible).

For a parallel implementation of a genetic algorithm, one must also consider that random

number generators used in computer implementations are pseudo-random. A pseudo-random num-

ber generator generates a sequence of numbers that appear to be random. However, the numbers

are not truly random since a each number (except the first) is calculated from the previous num-

ber(s) in the sequence (52:3). Given the same starting number ("the seed") the same sequence

of random numbers is produced. This deterministic method of generating random numbers has

"worked quite well in nearly every application (52:3)," and the repeatability is quite often quite

desirable. Indeed, debugging a program or studying the effects of a modification would be more

difficult if the random number generator used was truly random (27:202).

144

However, the use of pseudo-random number generators offers the potential for "correlations

among the sequences" of random numbers on each processor of a parallel computer. While Fox does

not give a precise definition of "correlation," from the context of his discussion, he seems to mean

"related." Such "correlations" can result in "several severe problems" including the reduction in

efficiency due to redundancy and "incorrect results" due to bias (27:202). For a search algorithm,

redundancy causing an inefficient search would seem to be the more likely problem. A "incorrect

result" does not seem possible because solutions are normally checked for feasibility.

However, it is hard to imagine a scenario (other than the Monte Carlo algorithm (27:202))

in which such problems would arise. Control decompositions seem relativity immune to the cor-

relation problem. In control decomposition, each processor will be executing a different program

(either stochastic or deterministic). So even if each processor generated the exact same random

number sequence (perfect "correlation"), the efficiency would not be diminished because the ran-

dom numbers are applied differently. In a data decomposition, each processor is assigned different

data. Identical random number sequences result in identical programs, but each act on different

data. If the programs, data, and random number sequences are identical, however, the effect is

complete redundancy on the processors. See Figure 63 for a summary.

A.2 Examination of the Parallel Random Number Generator.

With the extensive role a random number generator plays in a genetic algorithm, a thorough

examination of the random number generator used in Sawyer's parallel version of Grefenstette's

code, one of the foundations of this thesis effort, seems warranted.

Sawyer parallelized Grefenstette's Genesis program for his term project in the Parallel Algo-

rithms course here at AFIT (71:). This program was to be the foundation for this research effort. In

light of the importance and potential for difficulties associated with the random number generator

145

Data Algorithm Random Number* Problem Comment
Sequence

Different Different Different No Control and Data Decomposition
Different Different Same No -- Assumes no bias in the

random number sequence
Different Same Different No What Sawyer tried to do, but only

assured not identical-still
might be correlated

Different Same Same No Once "instantiate" stochastic function
with seed, analogous to data decomposition
of a deterministic algorithm

Same Different Different No Control Decomposition-different
random number sequences unnecessary
since using different stochastic
functions

Same Different Same No Effective control decomposition-
identical random number sequences applied
to different functions

Same Same Different No Still an effective control
decomposition since identical stochastic
functions "instantiated" with different
random numbers are different deterministic
function

Same Same Same Yes Processors perform same function on
same data; amount of loss of effective speedup
proportional to amount of correlation

* For random number sequences, define different to mean uncorrelated and same to be either
identical or correlated.

Figure 63. Possible Stochastic Algorithm Relationships on the Processors of a Parallel Computer

146

for a parallel genetic algorithm, the method of generating random numbers used by Grefenstette

and Sawyer was examined.

Grefenstette defined the random number generator as follows:

#define Rando) ((Seed = C (Seed * PRIME) & MASK)) * SCALE)

#define Randint(low,high) ((int) (low + (high-low+l) * Rando))

where, according to the comments in the code, Rand() returns a "pseudo-random value between 0

and 1, excluding 1, and Randint returns a pseudo-random number in the interval [low, high). Seed

is a variable of type int, the first value of which is input by the user. PRIME, MASK, and SCALE

are constants having the values shown in Figure 64.

Parameter Definition in Code Description

PRIME 65539 A prime number
MASK (0 << (INTSIZE - 1)) Masks high order bit

INTSIZE Number of bits in integer System Specific
SCALE 0.4656612875e-9 Reciprocal of 7fffffffh

(Makes range [0..1.0])

Figure 64. Parameters in Random Number Generator in Genesis

In Sawyer's parallel version, the user input seed, renamed OrigSeed, is used to calculate a

starting nodal seed as follows:

OrigSeed = (unsigned) ((OrigSeed + My-node) / (My_node + 1));

Seed = OrigSeed;

Neither Grefenstette's nor Sawyer's code or associated documentation discuss how the random

generator works, defend its choice over other methods of random generation, or even give a reference

from whence it came. Additionally, while one suspects Sawyer performed the preceding operation

to prevent nodes from having the same starting seed (that is, to prevent perfect "correlation"),

147

again this is discussed iowhere. Given the criticality of the random number generator, these issues

must be addressed.

A.3 Does the Sequence Appear to be Random?

Figure 65 shows 30 10-digit numbers generated by the pseudo-random number using the

program shown in Figure 68. Figure 66 shows the groupings of zeros for the Chi square test.

1011111000

1001100010
1010111000

1001000110
0100011000

1110010010
1000111001

0111101000
1100100010

0000100011
1001100000
1101011000
1110010101

0000111110
0001000011

0100101000

1010111010
1010100100
0110100010

1100011000
1000111111
0101011111
0011101111

1010101000
0111111001

0001100001

1100110110
0110110000
1111101110

1110011001

Figure 65. Pseudo-Random Number Generator Test Data

Following the example in Conover's book, the blocks j = 0,1,2,3 and j=7,8,9,10 are combined

as shown in Figure 67.

148

(Number of Blocks of 10 containing j zeros)
j 0 1 2 3 4 5 6 7 8 9 10 Total

0 0 1 4 5 6 8 6 0 0 0 30

154 zeros

146 ones

Figure 66. Distribution of Zeros

Class j< 3 j=4 j=5 j=6 j>7 Total
Oj observed number 5 5 6 8 6 30

E =expected number 5.157 6.153 7.380 6.153 5.157 30

Figure 67. Data Bins for the Chi-Square Test

The test statistic is (15:187)

T E (oj - Ej)2

j=1 Ej

Substituting the experimental values gives

(5 - 5.157)2 (5 - 6.153)2 (6 -7.380)2 (8 - 6.153)2 (.5.157 - 6)2
7 + + + +

5.157 6.153 7.380 6.153 5.157

T = 1.17112

For (c - 1) = (5 - 1) = 4 degrees of freedom, where c is the number of "bins" into which the

data was grouped,

Since the data was group into 5 bins and no parameters were estimated, the chi-square random

variable has (5 - 1) = 4 degrees of freedom (15:190). The observed value of T is very small, much

smaller than even the 0.75 quantile of a chi-square random variable with four degrees of freedom,

5.385 (15:367). Thus, the l's and O's appear to be randomly generated.

149

#include <stdio.h>

#define PRIME 65539
#define SCALE 0.4656612875e-9

#define INTSIZE 32
#define MASK -(0«(INTSIZE-1))

#define Rand() ((Seed = ((Seed * PRIME) & MASK))*SCALE)
#define Randint~low,high) ((int) (low + (high-low+1) *Rando))
main()

mnt i'j; 1* Loop Counters '

int even = 0; /* Number of even (zeros) within a group *
int num[11J; 1* The Groupings for the Chi-square test *
int Seed = 123456789; 1* Seed for random number generator *
inc total = 0; /* Total number of groupings *
for (i0O; i<11;i++) 1* Initialize groupings *

num~iJ = 0;
for (i=1; i<301;i++) /* Generate 300 1's and 0's using pseudo-random *
f /* number generator, counting the number of
j = Randint(0,1); 1* of zeros in each group of 10 digits *
pr-intfQ'(",j);

if (j == 0)
even++;

if (t % 10 == 0) /* Check whether at end of a group of 10 *

num~even]++; 1* Increment count of the group containing *
even = 0; 1* even 0's, then reset the counter even *
printf("\n");

printfC'\n"); /* Print out the number of observations of *
for (i=0; i < 11; ii-+) 1* each group, followed by the Total number *

printfC"%d ",i); 1* of instances (should be 300/10=30) *
printf("Total\n') ;
for (i0O; i <11; i+t+)

printf("%~d I,num[i]);
total += numtij

printf(" 7.d\n" ,total);

Figure' 68. Programn to Gc..erate Data for Chi-Square Test for Randomuness

150

A.j Prevention of Perfect "Correlation."

In the early tests of the baseline genetic algorithm, small random number seeds were used.

The results returned were quite poor, but they were consistently poor--every node returned the

exact same answer. Following the advice of Sawyer', much larger seeds were used. Solution quality

increased immensely, and often each node returned a different answer.

The reason for the poor results was that Sawyer's nodal seed calculation does not prevent

nodes from starting with the same pseudo-random number generator seed. This is illustrated in

Figure 4 which plots the starting nodal seeds versus user input seeds for nodes 6 and 7. The

integer division involved in the calculation of the nodal seeds results in a step function. For many

low input seeds, there is significant overlap in the "plateaus," indicating identical nodal seeds.

Starting with identical nodal seeds is disastrous. The first use of the random number generator is

in the generation of the nodal population. So starting with identical seeds results in identical nodal

population. Since identical programs are running on the nodes, the search performed is completely

redundant. So the occurrence of identical nodal seeds had to be prevented.

The overlap in the "plateaus" is observed to diminish as the user input seed increases. The

overlap disappears completely for user input seeds greater than or equal to N 2 - 2N + 2. Using

this fact, Figure 70 lists the minimum user input seeds needed to prevent any of the nodes from

starting with the same random number seeds.

A.5 Ramifications of Overlap.

While the guidance given above will prevent the nodes from starting with the same seed,

there does not seem to be anything preventing the "correlation" such as that shown in Figure 71.

Pictured are the random number sequences of two nodes. Should the nth random number of the

first sequence (Ao) be equal to the seed of the the second random number sequence (B0), the two

Personal interview

151

16__ __ __ __ __

14 _ (0 -igSee(+6)/i-1
14 -- -- 7zgSee 1r7j 7

12 - __ _ __ _ __

10-- _

Nodal 8_____
__

Seed 8 ___ _

6 Time_ F4____

4

2 ___

0 ____ ___ __

0 10 20 30 40 50 60 70 80 90 100
User Input Seed

Figure 69. Nodal Seeds versus User Input Seeds for Nodes 6 and 7

Number of Nodes Minimum Seed
1 1
2 2
4 10
8 50
16 226
32 962
64 3970
128 16130

Figure 70. Minimum User Input Seeds for Random Number Generator

152

sequences will be related as follows:

Aj+n = Bi

A 7 B 7

A 6 B 6

A 5 B 5

A 4 B 4

A3 B 3

A 2 B 2

A 1 B 1

Ao Bo

Figure 71. Correlation Between Nodal Random Number Sequences

For a parallel genetic algorithm, if such a correlation would occur in the early stages of

generation of the initial populations, several of the starting on the two nodes could be identical.

Specifically, if n be a the start of a string (that is, (n mod string-length) = 0), the strings generated

on the nodes will have a relationship similar to that shown in Figure 1. Intuitively, it would seem

having several identical strings at the start of the genetic algorithm might limit the breadth of the

search. Certainly, having identical strings would cause the parallel version to diverge for a sequential

153

version, since the generation of identical strings in the starting population of a sequential genetic

algorithm is extremely unlikely.

While the use of the prime number in the generator and Sawyer's massaging of the seed may

prevent such a correlation form occurring, this could not be proven. Fox does give a method to

ensure a "correlation" as shown in Figure 71 never occurs (27:203-207). This is discussed further

next.

A.6 A Fznal Misgiving with the Random Number Generator.

As stated previously, it would be desirable if the parallel genetic algorithm would perform as

close as possible to the sequential version, only faster. In this way, the heuristic knowledge (optimal

crossover rates, mutation rates, and so forth) available from years of study with sequential genetic

algorithms could be directly used.

The current method of random number generation causes the parallel and sequential versions

to differ in function as well as speed. With Sawyer's seed massaging, the resulting random number

sequences on the parallel processors, taken as a whole, are not equivalent to the sequential version.

Fox offers a method of allowing this equivalence by staggering the random number sequences on

each processor of the parallel computer (27:202-205). For example, consider a 2 processor parallel

computer The first processor generates the 1st, 3rd, 5th, . .. random numbe.s of the sequential

random number sequence, while the second processor generates the 2nd, 4th, 6th, . However,

time limitations prevented the implementation of Fox's algorithm. This is not believed to be a

serious flaw, and this difference might contribute to th' .uperior answers often found with parallel

genetic algorithms. That is, perhaps the difference parallel random number sequences from the

sequential sequence allows more extensive searching and avoids premature convergence.

154

Appendix B. Experimental Data-Examination of Premature Convergence using

Rosenbrock 's Saddle

1 1W'LS' -
'LN' -

'GS' -

'GN'
.1 'PN'

Best
Solution.

0.01

0.001 i i I I I
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 72. Best Solution Evolution - Population Size 80

1 I I I I

'LS' -

'LN'
'GS' -

'G N'
.1 'PN'

Best
Solution

0.01

0 001 I I i I I
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 73. Best Solution Evolution - Population Size 120

155

'LN'-
.1 ')GS'-

'GN'
TPN'

0.001

0.0001 1
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 74. Best Solution Evolution - Population Size 160

TLS'-
TLN'-

.1 'GS'-
'GN'
'PN'

Best 0.01
Soluntionf

0.001

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 75. Best Solution Evolution - Population Size 200

156

TLS'-
'LN'-

.1 'OS'-
'G N'
'PN'

0.01
Best

Solu~tion

0.001

le-05 I
0 20 40 60 80 100 120 140 160 180 200

veflerations

Figure 76. Best Solution Evolution - Population Size 240

1

TLS?
'LN'-

.1 'OS'-
'O7N'
'PN'

0.01
Best

Solution
0.001

0.0001

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 77. Best Solution Evolution - Population Size 280

157

TLS'-
TLN'-

.1 'G S'-
'GN'
'PN'

0.01
Best

0.00ti1

0.001

le-OS05
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 78. Best Solution Evolution - Population Size 320

.1
TLS'-

0.01 TLN'-
'GS)
'GN'

0.001 TPN'

Best0 01
Solution

I e-05

le-06

le-07 II

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 79. Best Solution Evolution - Population Size 640

158

TLS'-
0.01 'L'

'GS)
'GN'

0.001 'PN'

Best0 0 0 0 1
Solution

le-OS

le-06

le-07 II

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 80. Best Solution Evolution - Population Size 960

.1 1

0.01 'LN'
'GS'-

0.001 'PN'

Best 0 .0001
Sol uto

le-05

le-06

le-07 I1I

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 81. Best Solution Evolution - Population Size 1280

159

'LS'-
0.01 'LN'-

'GS'-
'GN'

0.001 'PN'

Besto0 001o
Solutionl

le-05

le-06

le-07 I I

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 82. Best Solution Evolution - Population Size 1600

.1

TLS'-
0.01 'LN'-

'GS'-
'G N'

0.001 'PN'

Best 0 0001
Solution

le-05F

le-06

le-07 I I

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 83. Best Solution Evolution - Population Size 1920

160

'LS'-
0.01 TLN -

'GS'-
1GN'

0.001 'PTN'

Best0 0 0 0 1
Solutiont

le-05

I e-06

le-07 I I

0 20 40 60 80 100 120 140 160 180 200
Generations

Figure 84. Best Solution Evolution - Population Size 2240

.1T - I
TLS)

0.01 TY'
'GS'
'G N'

0.001 'PN'

Bet0.000 1

le-05L

le-07
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 85- Best Solution Evolution Population Size 2560

161

.1 I I i I I

'LS'
0.01 LN'-

'GS' -
'GN'

0.001 'N'

Best0 .0 0 0 1
Solution

le-05

le-06

le-07 I I I I
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 86. Best Solution Evolution - Population Size 2880

.1 I I I I I

'LS'
0.01 'LN'

'GS' -
0.001 'GN'

'PN'

0.0001

le-05-

le-06

le-07

le-08
0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 87. Best Solution Evolution - Population Size 3200

162

Strategy I'S LN GS GN PN

Best Solution
Average 0.0600974961 0.0073666520 0.0185025357 0.0146298287 0.0132491450
Variance 0.0073413934 0.0001211785 0.0005285001 0.0005358038 0.0007064640
Standard Deviation 0.0856819315 0.0110081119 0.0229891306 0.0231474354 0.0265793912
Best = Optimal 0 0 0 1 0
Percentage 0.000 0.000 0.000 2.500 0.000

Best Generation
Average 35.950 84.250 39.625 122.025 106.575
Variance 959.997 3001.731 1439.779 2502.743 3327.122

Standard Deviation 30.984 54.788 37.944 50.027 57.681

Run Time (sec)] "
Average 1.412 1.259 4.305 5.437 3.078
Variance 0.000 0.000 0.019 1.495 0.207

Standard Deviation 0.003 0.004 0.137 1.223 0.455

Figure 88. Performance Statistics - Population Size 80

Strategy LS SLN S GN PN

Best Solution _

Average 0.0163581096 0.0036904968 0.0131689681 0.0014203140 0.0032367282
Variance 0.0006574382 0.0000537782 0.0003680278 0.0000137595 0.0000936323
Standard Deviation 0.0256405569 0.0073333611 0.0191840510 0.0037093797 0.0096763761
Best = Optimal 0 0 0 2 1
Percentage 0.000 0.000 0.000 5.000 2.500
Best Generation

Average 28.600 83.275 28.875 109.050 105.675
Variance 216.144 1783.640 368.471 1975.074 1795.917

Standard Dviation 14.702 42.233 19.196 44.42 42.378

Run Time (sec) I
Average 2.014 1.856 5.496 5.985 3.627
Variance 0.000 0.000 0.036 0.317 0.193

Standard Deviationi 0.003 0.004 0.190 0.563 0.440

Figure 89. Performance Statistics - Population Size 120

163

Strategy LS LN GS GN PN

Best Solution
Average 0.0081064174 0.0003744654 0.0080339205 0.0001592092 0.0003291361
Variance 0.0002224297 0.0000005102 0.0001655790 0.0000000970 0.0000004910
Standard Deviation 0.0149140776 0.0007142931 0.0128677485 0.0003114735 0.0007007261
Best = Optimal 1 5 1 2 3
Percentage 2.500 12.500 2.500 5.000 7.500

Best Generation
Average 30.425 89.200 36.750 127.775 122.275
Variance 211.430 1409.190 785.218 3124.948 1827.025
Standard Deviation 14.541 37.539 28.022 55.901 42.744

Run Time (sec)
Average 2.640 2.482 6.682 7.204 4.357
Variance 0.000 0.000 0.060 0.380 0.144
Standard Deviation 0.005 0.004 0.244 0.617 0.379

Figure 90. Performance Statistics - Population Size 160

Strategy LS LN GS GN PN

Best Solution
Average 0.0059918432 0.0001961058 0.0025524294 0.0001286657 0.0002618076
Variance 0.0002409487 0.0000001538 0.0000147185 0.0000000665 0.0000002075
Standard Deviation 0.01w5225211 0.0003921655 0.0038364707 0.0002578474 0.0004554858
Best = Optimal 2 5 1 7 3
Percentage 5.000 12.500 2.500 17.500 7.500

Best Generation
Average 35.300 102.425 41.575 126.500 135.575
Variance 191.600 1770.558 385.430 2426.410 1815.430
Standard Deviation 13.842 42.078 19.632 49.259 42.608

Run Time (sec)
Average 3.244 3.079 7.820 8.638 5.610
Variance 0.000 0.000 0.073 0.711 0.332
Standard Deviation 0.010 0.004 0.271 0.843 0.577

Figure 91. Performance Statistics - Population Size 200

164

Strategy LS LN GS GN PN

Best Solution
Average 0.0033921070 0.0002126956 0.0011919321 0.0000507796 0.0000979831
Variance 0.0001037008 0.0000001445 0.0000089784 0.0000000119 0.0000000344
Standard Deviation 0.0101833591 0.0003801:75 0.0029964003 0.0001091300 0.0001854318
Best = Optimal 3 7 3 7 11
Percentage 7.500 17.500 7.500 17.500 27.500

Best Generation
Average 44.775 108.150 44.300 152.375 140.450
Variance 755.307 1750.951 281.395 954.804 2123.126
Standard Deviation 27.483 41.844 16.775 30.900 46.077

Run Time (see)
Average 3.872 3.704 8.989 10.048 6.587
Variance 0.000 0.000 0.129 0.928 0.442
Standard Deviation 0.010 0.004 0.359 0.964 0.665

Figure 92. Performance Statistics - Population Size 240

Strategy LS LN GS GN PN

Best Solution
Average 0.0010071887 0.0000631100 0.0013087534 0.0000313350 0.0000240557
Variance 0.0000083784 0.0000000243 0.0000085081 0.0000000095 0.0000000090
Standard Deviation 0.0028945536 0.0001558943 0.0029168696 0.0000976677 0.0000950773
Best = Optimal 4 11 1 15 13
Percentage 10.000 27.500 2.500 37.500 32.500

Best Generation
Average 55.050 124.325 55.550 131.800 135.725
Variance 455.382 2198.481 919.177 1663.805 2155.025
Standard Deviation 21.340 46.888 30.318 40.790 46.422

Run Time (sec)
Average 4.,470 4.296 10.143 11.641 7.699
Variance 0.000 0.000 0.113 1.531 0.863
Standard Deviation 0.014 0.004 0.337 1.237 0.929

Figure 93. Performance Statistics - Population Size 280

165

Strategy LS LN GS GN PN

Best Solution
Average 0.0007114269 0.0000652606 0.0004305516 0.0000421857 0.0000360101
Variance 0.0000031068 0.0000000343 0.0000006309 0.0000000126 0.0000000122
Standard Deviation 0.0017626168 0.0001851510 0.0007942828 0.0001122424 0.0001103860
Best = Optimal 2 15 9 16 14
Percentage 5.000 37.500 22.500 40.000 35.000

I Best Generation
Average 50.975 119.825 60.775 148.775 134.075
Variance 529.256 1269.071 621.307 1707.102 1685.763
Standard Deviation 23.006 35.624 24.926 41.317 41.058

Run Time (sec)
Average 5.091 4.921 11.421 12.957 8.390
Variance 0.000 0.000 0.220 1.669 1.368
Standard Deviation 0.013 0.005 0.469 1.292 1.169

Figure 94. Performance Statistics - Population Size 320

Strategy LS LN GS GN PN

Best Solution
Average 0.0001484882 0.0000011267 0.0001565997 0.0000007502 0.0000008002
Variance 0.0000000668 0.0000000000 0.0000000664 0.0000000000 0.0000000000
Standard Deviation 0.0002583908 0.0000039916 0.0002577251 0.0000013161 0.0000013053
Best = Optimal 19 25 20 25 23
Percentage 47.500 62.500 50.000 62.500 57.500

Best Generation
Average 64.125 135.100 64.900 148.850 136.250
Variance 1243.702 2143.067 893.631 1631.874 1611.936
Standard Deviation 35.266 46.293 29.894 40.396 40.149

Run Time (sec)
Average 9.989 9.786 20.893 23.661 16.098
Variance 0.001 0.000 0.801 4.815 2.937
Standard Deviation 0.027 0.007 0.895 2.194 1.714

Figure 95. Performance Statistics - Population Size 640

166

Strategy LS LN GS GN PN

Best Solution
Average 0.0000925564 0.0000005001 0.0001222803 0.0000011760 0.0000013523
Variance 0.0000000392 0.0000000000 0.0000000507 0.0000000000 0.0000000000
Standard Deviation 0.0001979426 0.0000009340 0.0002252211 0.0000029556 0.0000046322
Best = Optimal 28 26 25 25 28
Percentage 70.000 65.000 62.500 62.500 70.000

Best Generation

Average 80.925 133.000 74.375 143.550 139.375
Variance 1566.225 2074.308 1397.369 1455.126 1567.420
Standard Deviation 39.576 45.545 37.381 38.146 39.591

Run Time (sec)
Average 14.908 14.685 29.938 35.627 24.069
Variance 0.001 0.000 1.476 10.774 9.901
Standard Deviation 0.029 0.008 1.215 3.282 3.147

Figure 96. Performance Statistics - Population Size 960

Strategy LS LN GS GN PN

Best Solution
Average 0.0000667514 0.0000013534 0.0000630746 0.0000007252 0.0000007253
Variance 0.0000000327 0.0000000000 0.0000000327 0.0000000000 0.0000000000
Standard Deviation 0.0001808587 0.0000057426 0.0001806995 0.0000013207 0.0000016340
Best = Optimal 32 30 34 26 25
Percentage 80.000 75.000 85.000 65.000 62.500

Best Generation
Average 78.600 132.050 87.950 149.975 143.900
Variance 1112.759 1842.408 1572.459 1035.358 1437.272
Standard Deviation 33.358 42.923 39.654 32.177 37.911

Run Time (sec) 19.839 19.526 40.166 45.264 32.425
Variance 0.001 0.000 2.387 12.449 14.758
Standard Deviation 0.032 0.008 1.545 3.528 3.842

Figure 97. Performance Statistics - Population Size 1280

167

Strategy LS LN GS GN PN

Best Solution
Average 0.0000370276 0.0000008516 0.0000334757 0.0000007252 0.0000006253
Variance 0.0000000178 0.0000000000 0.0000000175 0.0000000000 0.0000000000

Standard Deviation 0.0001333449 0.0000039488 0.0001322523 0.0000013207 0.0000016450
Best = Optimal 35 30 32 26 29
Percentage 87.500 75.000 80.000 65.000 72.500

Best Generation
Average 70.750 133.225 95.650 135.175 141.500
Variance 965.782 2022.333 1991.721 1643.789 1539.333

Standard Deviation 31.077 44.970 44.629 40.544 39.234

Run Time (sec)
Average 24.762 24.407 50.075 56.016 39.951
Variance 0.001 0.000 3.394 29.171 33.334

Standard Deviation 0.036 0.011 1.842 5.401 5.774

Figure 98. Performance Statistics - Population Size 1600

Strategy LS LN GS 1 GN PN

Best Solution
Average 0.0000036768 0.0000003001 0.0000223032 0.0000009759 0.0000004001
Variance 0.0000000005 0.0000000000 0.0000000096 0.0000000000 0.0000000000
Standard Deviation 0.0000230928 0.0000007235 0.0000981372 0.0000028907 0.0000007444
Best = Optimal 38 31 34 27 27
Percentage 95.000 77.500 85.000 67.500 67.500

Best Generation
Average 77.600 142.025 83.275 147.675 146.550
Variance 1590.092 1467.615 2094.666 1461.097 1723.382

Standard Deviation 39.876 38.309 45.768 38.224 41.514

Run Time (sec)

Average 29.687 29.263 59.905 68.432 45.822
Variance 0.001 0.000 10.219 59.578 23.450
Standard Deviation 0.034 0.010 3.197 7.719 4.842

Figure 99. Performance Statistics - Population Size !920

168

FStiaaegy LS LN GS GN PN
Bet 'Solution
Aver age 0.0000146074 0.0000005751 0.0000518770 0.0000008504 0.0000005501
Variance 0.0000000020 0.0000000000 0.0000000255 0.0000000000 0.0000000000
Sta-Kidard Deviation 0.0000443803 0.0000010838 0.0001596033 0.0000017922 0.0000010853

= v = Optimal 36 26 34 26 27
Perc*2ntage 90.000 65.000 85.000 65.000 67.500

Bh Generation
Avertage 99.625 142.550 90.875 137.325 143.250
Vauijance 1291.676 1963.638 882.984 871.815 1701.936

Stawdard Deviation 35.940 44.313 29.715 29.527 41.255

Rm Time (sec)
A verage 34.632 34.136 68.699 78.552 52.883
Variance 0.001 0.000 11.273 47.473 32.043
Stamdard Deviation 0.033 0.013 3.357 6.890 5.661

Figure 100. Performance Statistics - Population Size 2240

Strmtegy LS LN GS GN PN

Beat Solution
Average 0.0000148994 0.0000011517 0.0000074037 0.0000007002 0.0000007007
Variance 0.0000000088 0.0000000000 0.0000000010 0.0000000000 0.0000000000
Standard Deviation 0.0000939083 0.0000039875 0.0000322215 0.0000012030 0.0000025277
Be- = Optimal 37 24 37 24 27
Percentage 92.500 60.000 92.500 60.000 67.500

Best Generation
Average 77.425 134.725 92.775 138.950 143.225
Variance 671.122 1922.769 1698.948 2268.664 1840.846
Stawdard Deviation 25.906 43.849 41.218 47.630 42.905

Rum 'rime (see)
Average 39.546 39.004 79.155 86.242 60.774
Variance 0.001 0.000 12.840 46.784 45.770
Standard Deviation 0.030 0.018 3.583 6.840 6.765

Figure 101. Performance Statistics - Population Size 2560

169

Strategy LS LN GS GN PN

Best Solution
Average 0.0000148494 0.0000007257 0.0000036518 0.0000005502 0.0000010509
Variance 0.0000000088 0.0000000000 0.0000000005 0.0000000000 0.0000000000
Standard Deviation 0.0000939161 0.0000025256 0.0000230963 0.0000012189 0.0000028770
Best = Optimal 39 26 39 30 24
Percentage 97.500 65.000 97.500 75.000 60.000
Best Generation
Average 92.875 120.825 90.725 141.875 143.150
Variance 1624.830 2284.097 1230.358 2028.933 1791.156
Standard Deviation 40.309 47.792 35.076 45.044 42.322
Run Time (sec)
Average 44.489 43.868 88.465 97.880 68.463
Variance 0.002 0.000 20.858 73.952 46.018
Standard Deviation 0.039 0.017 4.567 8.600 6.784

Figure 102. Performance Statistics - Population Size 2880

Strategy LS LN GS GN PN
Best Solution
Average 0.0000000000 0.0000004251 0.0000148994 0.0000004751 0.0000005001
Variance 0.0000000000 0.0000000000 0.0000000088 0.0000000000 0.0000000000
Standard Deviation 0.0000000000 0.0000009309 0.0000939083 0.0000007509 0.0000010864
Best = Optimal 40 29 37 24 29
Percentage 100.000 72.500 92.500 60.000 72.500

Best Generation
Average 93.375 131.500 87.900 137.875 133.925
Variance 1567.369 1747.385 1649.272 1445.599 2067.507
Standard Deviation 39.590 41.802 40.611 38.021 45.470
Run Time (sec)
Average 49.401 48.735 97.023 106.952 76.524
Variance 0.001 0.000 19.807 99.388 161.663
Standard Deviation 0.030 0.018 4.451 9.969 12.715

Figure 103. Performance Statistics - Population Size 3200

170

Bibliography

1. Baker, James E. "Reducing bias and inefficiency in the selection algorithm." Genetic Algo-
rahms and Their Applications: Proceedings of the Second International Conference on Genetic
Algorithms. 14-21. Hillsdale NJ: Lawrence Erlbaum Associates, 1987.

2. Baker, James E. Analysis of the effects of selection in genetic algorithms. PhD dissertation,
Vanderbilt University, Nashville TN, 1989.

3. Bennet, Kristin and others. "A Genetic Algorithm for Database Query Optimization." Pro-
ceedings of the Fourth International Conference on Genetic Algorithms. 400-407. San Mateo
CA: Morgan Kaufmann Publishers, Inc., 1991.

4. Bethke, Albert D. Genetic Algorithms as Function Optimizers. PhD dissertation, The Uni-
versity of Michigan, Ann Arbor MI, 1980.

5. Bonomi, E. and J.L. Lutton. "The N-city traveling salesman problem: statistical mechanics
and the Metropolis Algorithm," SIAM Review, 26:551-569 (October 1984).

6. Brainlette, Mark A. and Rob Cusic. "A Comparative Evaluation of Search Methods Applied
to Parametric Design of An Aircraft." Proceedings of the Third International Conference on
Genetic Algorithms. 213-218. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1989.

7. Brassard, Giles and Paul Bratley. Algorithmics: Theory and Practice (First Edition). Engle-
wood Cliffs NJ: Prentice Hall, 1988.

8. Bridges, C. L. and David E. Goldberg. "An analysis of a reordering operator on a GA-hard
problem," Biological Cybernetics, 62.397-405 (1990).

9. Brown, Donald E. and others. "A Parallel Genetic Heuristic for the Quadratic Assignment
Problem." Proceedings of the Third International Conference on Genetic Algorithms. 406-415.
San Mateo CA,: Morgan Kaufmann Publishers, Inc., 1989.

10. Caldwell, Craig and Victor S. Johnston. "Tracking a Criminal Suspect Through Face Space
with a Genetic Algorithm." Proceedings of the Fourth International Conference on Genetic
Algorithms. .116-421. Sari Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

11. Cleveland, G. A. and S. F. Smith. "Using genetic algorithms to schedule flow shop releases."
Proceedings of the Third International Conference on Genetic Algorithms. 160-169. San Mateo
CA: Morgan Kaufmann Publishers, Inc., 1989.

12. Cochran, Will G. Sampling Techniques (Third Edition). New York: John Wiley & Sons, 1977.

13. Cohoon, J. P. and others. "A multi-population genetic algorithm for solving the k-partition
problem on hyper-cubes." Proceedings of the Fourth International Conference on Genetic Al-
gorithnis. 244-248. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

14 Cohoon. J.P. and others. "Punctuated equilibria: a parallel genetic algorithm." Genetic Algo-
rithms and Their Applications: Proceedings of the Second International Conference on Genetic
Algorithms. 148-154. Hillsdale NJ: Lawrence Erlbaum Associates, Inc., 1987.

15. Conover, W.J. Practical Nonparametric Statistics. New York: John Wiley & Sons, 1971.

16. Das. Rajarshi and Darrell Whitley. "The only challenging problems are deceptive: global
search by solving order-I hyperplanes." Procrdings of the Fourth International Conference on
Genetic Algorithms. 166-173. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

171

17. Davidor, Yuval. "A Genetic Algorithm Applied to Robot. Trajectory Generation." Handbook of
Genetic Algorithms edited by Lawrence Davis, 144-165, New York: Van Nostrand Reinhold,
1991.

18. Davis, Lawrence. "What is a Genetic Algorithm?." Handbook of Genetic Algorithms edited
by Lawrence Davis, 1-22, New York: Van Nostrand Reinhold, 1991.

19. De Jong, Kenneth A. Analysis of the behavior of a class of genetic adaptive systems. PhD
dissertation, The University of Michigan, Ann Arbor MI, 1975.

20. De Jong, Kenneth A. "Genetic algorithms: a 10 year perspective." Proceedings of the First
International Conference on Genetic Algorithms and Their Applications. 169-177. Hillsdale
NJ: Lawrence Erlbaum Associates, 1988.

21. De Jong, Kenneth A. and William M. Spears. "Using Genetic Algorithms to Solve NP-
Complete Problems." Proceedings of the Third International Conference on Genetic Algo-
rithms. 124-132. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1989.

22. Dromey, Geoff. Program Derivation: The Development of Programs from Specifications. Syd-
ney Australia: Addison-Wesley Publishing Company, Inc., 1989.

23. Eshelman, Larry J. and others. "Biases in a crossover landscape." Proceedings of the Third
International Conference on Genetic Algorithms. 10-19. San Mateo CA: Morgan Kaufmann
Publishers, Inc., 1989.

24. Eshelman, Larry J. and J. David Schaffer. "Preventing premature convergence in genetic algo-
rithms by preventing incest." Proceedings of the Fourth International Conference on Genetic
Algorithms. 115- 122. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

25. Forrest, Stephanie and Gottfried Mayer-Kress. "Genetic algorithms, nonlinear dynamical
systems, and models of international security." Handbook of Genetic Algorithms edited by
Lawrence Davis, 166-185, New York: Van Nostrand Reinhold, 1991.

26. Forrest, Stephanie and Melanie Mitchell. "The performance of genetic algorithms on Walsh
polynomials: some anomalous results and their explanation." Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms. 182-189. San Mateo CA: Morgan Kaufmann
Publishers, Inc., 1991.

27. Fox, Geoffrey C_ and others. Solving Problems on Concurrent Processors, 1. Englewood Cliffs
NJ: Prentice Hall, 1988.

28. Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completcness. San Francisco CA: W. H. Freeman and Company, 1979.

29. Gehani, Narain. C: An Advanced Introduction. Rockville MD: Computer Science Press, 1985.

30. Goldberg, David E. Optimal Initial Population Size for Binary-Coded Genetic Algorithms.
Technical Report, Tuscloosa AL: University of Alabama, 1985.

31. Goldberg, David E. "Simple Ger,-ic Algorithms and the Minimal Deceptive Problem." Ge-
netic Algorithms and Simulated Annealing, edited by Lawrence Davis. 74-88. London: Pitman
Publishing, 1987.

32. Goldberg, David E. Genetic algorithms and Walsh functions: Part I, a gentle introduction.
Technical Report, Tuscloosa AL: University of Alabama, 1988. TCGA Report No. 88006.

33. Goldberg, David E. "Cenetic algorithms and Walsh functions: Part II, deception and its
analysis," Complex Systems, 3:153-171 (1989).

34. Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading MA: Addison-Wesley Publishing Company, 1989.

172

35. Goldberg, David E. "Sizing Populations for Serial and Parallel Genetic Algorithms." Proceed-
ings of the Third International Conference on Genetic Algorithms. 398-405. San Mateo CA:
Morgan Kaufmann Publishers, Inc., 1989.

36. Goldberg, David E. and others. "Messy Genetic Algorithms: Motivation, Analysis, and First
Results," Complex Systems, 3:493-530 (1989).

37. Goldberg, David E. and others. "Messy Genetic Algorithms Revisited," Compl Systems,
4:415-444 (1990).

38. Goldberg, David E. and others. "Don't Worry, Be Messy." Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms. 24-30. San Mateo CA: Morgan Kaufmann
Publishers, Inc., 1991.

39. Goldberg, David E. and Robert Lingle. "Alleles, loci, and the traveling salesman problem."
Proceedings of the First International Conference on Genetic Algorithms and Their Applica-
tions. 154-159. Hillsdale NJ: Lawrence Erlbaum Associates, 1988.

40. Grefenstette, John J. "Optimization of Control Parameters for Genetic Algorithms," IEEE
Transactions on Sytems, Man, and Cybernetics, 1:122-128 (1986).

41. Grefenstette, John J. A User's Guide to Genesis. Technical Report, Nashville TN: Vanderbilt
University, 1986.

42. Grefenstette, John J. and James E. Baker. "How genetic algorithms work: a critical work
at implicit parallelism." Proceedings of the Third It.ternational Conference on Genetic Algo-
rithms. 20-27. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1989.

43. Grefenstette, John J. and others. "Genetic Algorithms for the Traveling Salesman Problem."
Proceedings of the Third International Conference on Genetic Algorithms. San Mateo CA:
Morgan Kaufmann Publishers, Inc., 1989.

44. Grimaldi, Ralph P. Discrete and Combinatorial Mathematics: An Applied Introduction (Sec-
ond Edition). Reading MA: Addison-Wesley Publishing Company, Inc., 1989.

45. Harp, Steven A. and Tariq Samad. "Genetic Synthesis of Neural Network Architecture."
Handbook of Genetic Algorithms edited by Lawrence Davis, 202-221, New York: Van Nostrand
Reinhold, 1991.

46. Hesser, J. and others. "Optimization of Steiner Trees Using Genetic Algorithms." Proceedings
of the Third International Conference on Genetic Algorithms. 231-236. San Mateo CA:
Morgan Kaufmann Publishers, Inc., 1989.

47. Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor MI: The University
of Michigan Press, 1975.

48. Homaifar, Abdollah and others. "Analysis and design of a general GA deceptive problem."
Proceedings of the Fourth International Conference on Genetic Algorithms. 196-203. San
Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

49. Jog, Prasana and Dirk Van Gucht. "Parallelisation of probabilistic sequential search algo-
rithms." Genetic Algorithms and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms. 170-176. Hillsdale NJ: Lawrence Erlbaum Associates,
Inc., 1987.

50. Kernighan, forian W. and Dennis M. Ritchie. The C Programming Language. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1978.

51. Kleinbaum, David G. and Lawrence L. Kupper. Applied Regrcbsion Analysis and Other Mul-
tivariable Methods. North Scituate MA: Duxbury Press, 1978.

173

52. Knuth, Donald E. The Art of Computer Programming (Second Edition), 2. Reading MA:
Addison-Wesley Publishing Company, 1981.

53. Kruse, Robert L. iData Structures and Program Design. Englewood Cliffs NJ: Prentice-Hall,
Inc., 1984.

54. Larsen, Richard J. and Morris L. Marx. An Introduction to Mathematical Statistics and its
Applications. Englewood Cliffs NJ: Prentice-Hall, Inc., 1981.

55. Liepins, G. E. "Greedy Genetics." Genetic Algorithms and Their Applications: Proceedings of
the Second International Conference on Genetic Algorithms. 90-99. Hillsdale NJ: Lawrence
Erlbaum Associates, 1987.

56. Lucasius, C. B. and others. "A Genetic Algorithm for Conformational Analysis of DNA."
Handbook of Genetic Algorithms edited by Lawrence Davis, 251-281, New York: Van Nostrand
Reinhold, 1991.

57. Maybeck, Dr. Peter S. Personal interview. Air Force Institute of Technology, Wright-Patterson
AFB OH, 10 Jan 1992.

58. Mendenhall, William and others. Mathematical Statistics with Applications (Fourth Edition).
Boston: PWS-KENT Publishing Company, 1990.

59. Miller, Lawerence H. and Alexander E. Quilici. Programming in C. New York: John Wiley &
Sons, 1986.

60. Muhlenbein, H. and others. "The parallel genetic algorithm as a function optimizer." Proceed-
ings of the Fourth International Conference on Genetic Algorithms. 271-278. San Mateo CA:
Morgan Kaufmann Publishers, Inc., 1991.

61. Nakano, Ryohei. "Conventional Genetic Algorithm for Job Shop Problems." Proceedings of
the Fourth International Conference on Genetic Algorithms. 474-479. San Mateo CA: Morgan
Kaufmann Publishers, Inc., 1991.

62. Office of Science and Technology Policy. Grand Challenges: High Performance Computing
and Communications. Technical Report. Washington, D.C.: Committee on Physical, Mathe-
matical, and Engineering Sciences, 1990.

63. Pettey, Chrisila B. and others. "A parallel genetic algorithm." Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on Genetic Algorithms.
155-161. Hillsdale NJ: Lawrence Erlbaum Associates, Inc., 1987.

64. Pettey, Chrisila B. and Michael R. Leuze. "A theoretical investigation of a parallel genetic
algorithm." Proceedings of the Third International Conference on Genetic Algorithms. 398-
405. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1989.

65. Powell, David J. and others. "Interdigitation: A hybrid technique for engineering design opti-
mization employing genetic algorithms, expert systems, and numerical optimization." Hand-
book of Genetic Algorithms edited by Lawrence Davis, 312-331, San Mateo CA: Van Nostrand
Reinhold, 1991.

66. Pugh, Kenneth. C Language for Programmers (Second Edition). Wellesley MA: QED Infor-
mation Sciences, Inc., 1990.

67. Ragsdale, Susann. Parallel Programming. New York: McGraw-Hill, Inc., 1991.

68. Riolo, Rick L. "Modeling Simple Human Category Learning with a Classifier System." Pro-
ceedings of the Fourth International Conference on Genetic Algorithms. 324-333. San Mateo
CA: Morgan Kaufmann Publishers, Inc., 1991.

69. Rosenbrock, H. H. "An automatic method for finding the greatest or least value of a function,"
Computer Journal, 3:175-184 (1960).

174

70. Sandgren, Eric. The utility of non!inear programming algorithms. PhD dissertation, Purdue
University, Lafayette IN, 1977.

71. Sawyer, George A. "Functional optimization using parallel genetic algorithms." Compendium
of Parallel Programs for the Intel iPSC Computers, Volume I, Version 1.5, edited by Gary B.
Lamont and others. Unpublished compendium. Air Force Institute of Technology, Wright-
Patterson AFB OH, 1989.

72. Syswerda, Gilbert and Jeff Palmucci. "The Application of Genetic Algorithms to Resource
Scheduling." Proceedings of the Fourth International Conference on Genetic Algorithms. 502-
508. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1991.

73. Tanese, Reiko. "Parallel genetic algorithms for a hypercube." Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on Genetic Algorithms.
170-176. ilillsdale NJ: Lawrence Erlbaum Associates, Inc., 1987.

74. Tanese, Reiko. "Distributed Cenetic Algorithms." Proceedings of the Third International Con-
ference on Genetic Algorithms. 434-440. San Mateo CA: Morgan Kaufmann Publishers, Inc.,
1989.

75. Wilson, Kenneth G. "Grand Challenges of Computational Science," Future Generations Com-
puter Systems, 5:171-191 (1989).

76. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs NJ: Yourdon Press, 1989.

175

